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1 Introduction

An important direction in commutative algebra is the study of homological invariants asso-
ciated to ideals in a polynomial ring. These invariants tend to be quite mysterious for even
some of the simplest ideals, such as those generated by monomials, which we address here.
Let S = k[xy,...,2,] be the polynomial ring in n variables over a field k. A monomial
in S is an element of the form z{* - --z% where each a; € N (possibly zero), and an ideal
I C S is a monomial ideal if it is generated by monomials. Although they arise most
naturally in commutative algebra and algebraic geometry, monomial ideals can be further
understood using techniques from combinatorics and topology. In particular, graph theory
is used as a tool to study different classes of monomial ideals. Given a finite, simple graph
G = (V(G), E(@)), we can associate to G a monomial ideal called the edge ideal of G, given
by I(G) = (xiz; | {z;,x;} € E(G)). This is an ideal generated by square-free monomial
ideals of degree two. In fact, all such ideals come from a finite, simple graph, so we can
exploit this correspondence in our study of their homological invariants.

One significant invariant of a monomial ideal [ is its minimal free resolution, which
is given by an exact complex of the following form.

0— P S(—a)’ — .. — PS(~a)D 2 PS(~a)oeD —1-—0 (1)

aeN aeN aeN

In the above complex, f3; ;(I) denotes the 7, j-th Betti number of /. These numbers are
interesting because they encode important invariants of the ideal I such as the projective
dimension and Castelnuovo-Mumford regularity, reg(7). In geometric settings, when [ is an
ideal defining a projective variety, the Betti numbers can be used to read off further geometric
invariants such as the dimension, the degree, and the Hilbert function and polynomial. One
way to measure the complexity of the resolution in (1) is to look at the degrees of the entries
in the matrices of the differential maps of the resolution. The simplest situation is when all
of these entries are linear forms, in which case we say that [ has a linear resolution.

Although little is known in general about which ideals have a linear resolution, we do
have a complete answer for edge ideals due to the following theorem of Fréberg.

Theorem 1. I(G) has a linear resolution if and only if the complement of G, denoted G°,
is chordal (every cycle of length > 3 has a chord).

Herzog, Hibi, and Zheng then proved the remarkable result that all powers of ideals
generated in degree two with a linear resolution also have a linear resolution. A natural
question to ask next is what conditions does an edge ideal I(G) need to satisfy to guarantee
that I(G)® has a linear resolution for all sufficiently large s? This is currently an open
question, but Nevo and Peeva have conjectured the following.

Conjecture 1. I(G)*® has a linear resolution for all s > 0 if and only if G° has no induced
4-cycles (no cycles of length 4 that do not contain a chord).

Working towards one direction, Nevo has proven that if G has no induced 4-cycles and
if G satisfies an additional explicit combinatorial condition (G is claw free), then I(G)? has
a linear resolution. However, Conjecture 1 remains open even in this case. Thus, it is an



interesting question to find combinatorial conditions that guarantee higher powers of I(G)
have a linear resolution.

Approaching Conjecture 1 from a different direction, it is natural to study the extent to
which the minimal free resolutions are linear. To formalize this notion, we use Green and
Lazarsfeld’s N, property, which says that the first p maps in (1) are represented by matrices
of linear forms. Particularly, if an edge ideal I(G) satsifies the Ny property, i.e. the map ¢
in (1) is a matrix of linear forms, then we say I(G) has a linear presentation. A theorem
proven by Eisenbud, et. al gives that /(G) has a linear presentation if and only if G has no
induced 4-cycles. This result allows Conjecture 1 to be restated as follows.

Conjecture 2. An edge ideal 1(G) of a finite, simple graph G has a linear presentation if
and only if I(G)*® has a linear resolution for all s > 0.

This formulation has the advantage that it can be generalized by replacing I(G) with
an arbitrary homogeneous ideal I generated in degree two (it also makes sense for ideals
generated in higher degree, but in that case, counterexamples are known to exist).

The study of monomial ideals is a popular topic of current research as there are a plethora
of open questions regarding the structure of their minimal free resolutions, Betti numbers,
projective dimension, regularity, etc. It is remarkable that these invariants are not well
understood even for edge ideals. In this thesis we will introduce the necessary background
material about homological algebra, monomial ideals, and related topics needed to under-
stand Conjecture 2 and begin to explore new ways to attempt to prove it. While sections
2 and 3 are largely presentations of the required concepts, sections 4 and 5 contain several
theorems and examples that make use of these concepts. Particularly, in section 4 we prove
Froberg’s Theorem, one of the main results about edge ideals. Finally, in section 5 we show
how to compute Ext groups for different classes of monomial ideals.

2 Homological Algebra

2.1 Exact Sequences and Projective and Injective Modules

We begin our study of homological algebra by introducing exact sequences, which will be
used widely throughout the rest of this thesis. This section will primarily follow the material
found in chapter 10.5 of [1]. Let R be a commutative ring with a unity element, denoted by
1, and let A, B, and C be R-modules. Then the pair of homomorphisms

A5 BYC
is said to be exact (at B) if im ¢ = ker. Similarly, a sequence of R-modules of the form
e — Ay — Ay — Ay — -

is called an exact sequence if it is exact at every A, between a pair of homomorphisms.
Such a sequence of the form

0— A5 B0 —0



is called a short exact sequence. Using the definition of exactness, one can show that in
a short exact sequence, ¢ is injective, ¢ is surjective, and im ¢ = ker . In this case, we say
that B is an extension of C' by A. This may be seen more explicitly by the common short
exact sequence

0— A-2 B B/A—0.

Another important example of a short exact sequence is given by
0 — kerp — F(S) 2+ M — 0 (2)

where M is an R-module, S is a set of generators for M, F(S) is the free R-module on S,
the homomorphism ¢ is the inclusion map, and ¢ is the unique R-module homomorphism
which is the identity on S.

Given two short exact sequences of R-modules, 0 — A —25 B Yy ¢ —5 0 and

0— A 2B o — 0, we define a homomorphism between short exact
sequences as a set of three R-module homomorphisms «, 5, and v that make the following
diagram commute:

0 s A2, pB Y, > 0
O
0 LA g Y > 0.

This diagram commutes if any compositions of the homomorphisms in the diagram that start
and end at the same places are equal. For example, if this this diagram commutes, then
' ofop =1 oy oa since both compositions start at A and end at C’. A useful property of
a homomorphism of short exact sequences, called the Short Five Lemma [1, Ch. 10.5, Prop.
24|, is that if both « and ~ are injective (surjective), then 3 is also injective (surjective).

Given a short exact sequence of R-modules, 0 — A - B o — 0, it is natural to
study the relationship between A, B, and C with respect to different properties. For example,
let D be another R-module and suppose there exists a homomorphism from D to A. Does
this imply that there exists a homomorphism from D to B? We will show that the answer
is yes. Let Hompg(D, M) denote the set of all R-module homomorphisms from D to the R-
module M. This set is actually an abelian group with composition of homomorphisms as the
multiplicative law. If f € Hompg(D, A), then the composite map f' = f o ¢ € Homg(D, B).
Pictorially, we have the following commutative diagram:

D
AN
A—"-B
In other words, the map ¢’ : Homg(D, A) — Homg(D, B) which sends f — f' = fopis

a homomorphism of abelian groups. Further, one can show that if ¢ is injective, then ¢’ is
also injective. Therefore, if 0 — A —=» B is exact, i.e. ¢ is injective, then the sequence

0 — Hompg(D, A) i’> Hompg(D, B) is also exact. In the language of category theory, this



shows that Hompg (D, ) is a covariant functor which is left exact. This functor is said to be
exact if / /
0 —» Homp(D, A) -2 Homp(D, B) ~ Hompg(D, C) —3 0

is a short exact sequence (the map 1/’ is not surjective in general). This is the case if and
only if D is a projective R-module. For the purposes of this thesis, it is important to note
that all free modules are projective. Since the functor Homg(D, ) is not necessarily exact
on the right, homological algebra is used to measure the degree to which exactness on the
right fails. We will describe details of this later on in this section.

In a similar manner as above, we can instead consider the functor Homg(_, D). Given
f € Hompg(C, D), we see that the composite map f' = f o € Homg(B, D). Pictorially, we
have the commutative diagram:

BLC

!

In other words, the map ¢’ : Homg(C, D) — Hompg(B, D) which sends f+— f'= fot isa
homomorphism of abelian groups. Further, one can show that if

00— A5B- 0 —0

is a short exact sequence of R-modules, then for any R-module D the sequence
0 — Hompg(C, D) -2 Homp(B, D) -2 Homg(A, D) (3)

is also exact, but ¢’ is not necessarily surjective. Therefore, Homg(_, D) is a contravariant
functor that is left exact, and is exact if and only if D is an injective R-module.

Throughout the rest of this thesis, we will frequently make use of the following statements,
so we make note of them now.

Proposition 2. Let R be a commutative ring with 1, and let M be any R-module. Then we
have

(i) Homg(R, M) = M and
(ii) Hompg(R", M) = M™.

Proof. The isomorphism for (i) sends ¢ € Hompg(R, M) to ¢(1) = m € M, since ¢ is
determined by its action on the generator of R, that is, by ¢(1).

The isomorphism for (ii) sends ¢ € Hompg(R", M) to the element (p(e1),...,¢(e,)) € M™
where eq,...,e, is a basis for R". n

2.2 Ext and Tor

We are now ready to introduce some of the main tools used in homological algebra, as found
in chapter 17 of [1]. Since this thesis will primarly focus on the properties of the homological
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group Ext, we will introduce this first. Then, there is a very similar, but dual, way to
introduce Tor, which we will not describe in quite as much detail. To start, we consider a
generalization of an exact sequence, called a cochain complex. A cochain complex, C*, is
a sequence of abelian group homomorphisms

C* 00— 0By ot By ol ey o

such that d, 1 o d, = 0 for each n € N. Equivalently, this means that imd,, C kerd,; for
each n. Then the n'" cohomology group of C* is defined to be the quotient group

H"(C*) =kerd,,1/imd,.

The corresponding “dual” version of this involves chain complexes, which are descending
sequences of abelian group homomorphisms

Co : —>C’n+1"—+§C’ dn Cn—l" C1 C()—>0

such that d,,; o d, = 0 for each n. Then the n'" homology group of C, is defined to be
the quotient group
H,(C,) =kerd,/imd, .

We will first focus on cochain complexes in which each C" is an R-module and each d,, is an
R-module homomorphism. Then the cohomology groups are also R-modules. Additionally,
observe that a cochain complex is an exact sequence if im d,, = ker d,,;; for each n, which is
equivalent to H"(C*) = 0 for each n. In this way, the n'" cohomology groups of a cochain
complex measure the failure of exactness at each C™. Similarly, the n'® homology groups of
a chain complex measure the failure of exactness at each C,.

As before when we defined a homomorphism between two short exact sequences, we
can define a homomorphism between two cochain complexes. Let A® and B°® be cochain
complexes. Then a homomorphism of complexes « : A* — B° is a set of homomorphism

n o A" — B" such that for each n the following diagram commutes:

>y A" y Amt ———
la" lanﬁ-l
> B > Bl .

Using the commutativity of this diagram, one can show that a homomorphism of cochain
complexes as above induces group homomorphisms between H"(A*) and H"(B*) for each n.
Now that we have homomorphisms between complexes, we can define short exact sequences
of complexes in a natural way. Let A°, B®, and C* be cochain complexes. Then a short
exact sequence of complexes

0— A B 20— 0

Qn

a sequence of homomorphisms of complexes such that 0 — A" — B" Do 50
is a short exact sequence for each n. Pictorally, we have the following diagram where every



column is a short exact sequence.

0 0

y A" y AL 5
(e 7% An+1

> B" > Bl .
671 ﬁn+1

> C" y Ol
0 0

We are now ready to state one of the main theorems in homological algebra.

Theorem 3 (Long Exact Sequence in Cohomology). Let 0 — A* —* B* et —0bea
short exact sequence of cochain complexes. Then there is a long exact sequence of cohomology
groups given by

0 — HA%) — HO(B*) — H°(C*) 2% HY(A*) — HY(B*) — HY(C*) 2 H*(A®) — -+

where the 6, are called connecting homomorphisms and the maps between the respective
cohomology groups are those induced by the short exact sequences

O—>A”ﬂ>B”ﬁ>Cn—>Oforeachn.

Notice that the long exact sequence in cohomology implies that if any two of the cochain
complexes are exact, i.e. have trivial cohomology groups for all n, then by exactness, the
third cochain complex must also have trivial cohomology groups, so it is also exact.

In order to define Ext, we first need to understand projective resolutions. Let A be any
R-module. Then A has a projective resolution which is an exact sequence of projective
R-modules of the form

dn, dn— d d
i — P, P S 2P S P A—0.

In particular, we can choose each P; to be a free R-module and construct what is called a free
resolution of A in the following way. First, let F, be a free R-module on a set of generators
of A and define an R-module homomorphism ¢ : Py — A in the natural way (as done in (2)
on page 4). Then e is surjective, so the sequence Py — A — 0 is exact. Now we repeat
this process with the submodule kere C P, instead of A. Let P, be a free R-module on a
set of generators of ker € and define d; : P, — P, such that imd; = kere. Then the sequence

P A Py = A — 0 is exact. We can continue repeating this process at each step to
obtain a free resolution of A. Free resolutions of modules in the multi-variable polynomial
ring will be dicussed further in section three. The length of the shortest projective resolution
of an R-module, which may be infinite, is called its projective dimension. Also, note that
projective resolutions are chain complexes.



Given R-modules A and D, and a projective resolution of A, we can then apply the functor
Hompg( , D) to the projective resolution. Recall that this is a left exact, contravariant
functor, which means that the direction of the homomorphisms is reversed, which gives the
sequence

0 — Hompg(A, D) - Hompg(Py, D) -2 Hompg(Py, D) -2

- " Homp(P,_y, D) - Homp(P,, D) =4 ...

where the maps are the induced maps and we have abused notation by naming them what
they were before. This is a cochain complex, so we can find its cohomology groups.

Definition 4. For the setup in the preceeding paragraph with d,, : Homg(P,1,D) —
Hompg(P,, D), we define
Exti(A, D) =kerd,;1/imd,

with Ext%(A4, D) = kerd; to be the n'" cohomology group derived from the functor
Hompg(_, D).
Observe that since P; N Py -+ A — 0 is exact, the sequence

0 — Hompg(A, D) == Hompg(Py, D) -2 Hompg (P, D)

is also exact. Therefore, Ext%(A, D) = kerd; = ime = Hompg(A, D) since € is injective.
When computing Ext of different R-modules, we will frequently make use of this isomorphism

Ext% (A, D) = Homg(A, D).

An important result, which we will not prove here (the details can be found in Chapter 17.1
of [1], is that the groups Extz(A, D) depend only on the R-modules A and D, and do not
depend on the choice of projective resolution for A. Therefore, for a fixed R-module D,
Extl(_, D) is a contravariant functor from the category of R-modules to the category of
abelian groups. The following theorem [1, Ch. 17.1, Thm. 8] gives a long exact sequence in
cohomology coming from a short exact sequence.

Theorem 5. Let 0 — A — B — C — 0 be a short exact sequence of R-modules. Then
there exists a long exact sequence of abelian groups
0 —s Homp(C, D) —s Homg(B, D) — Hompg(A, D) 2% Exth(C, D)
— Exth(B, D) — ExtkL(A, D) 2% Ext%(C, D) —» - --

where the maps between groups at the same level n are induced from the maps in the short
exact sequence and the 6,, are connecting homomorphisms as in Theorem 3.

Observe that the first four terms of the long exact sequence in Theorem 5 are the same
as the sequence given in Proposition 3, which we noted is not necessarily exact on the right.
In this way, the fifth term in the exact sequence in Theorem 5, that is Extj(C, D), is the



first measure of the failure of exactness on the right of the functor Hompg( , D). Therefore,
the sequence in Proposition 3 can be extended to a short exact sequence if and only if the
connecting homomorphism ¢y is the zero map. For examples of computing Ext groups, see
Proposition 23.

We have seen above that the cohomology groups Ext',(_, D) determine what happens to
short exact sequences on the right after applying the left exact functor Hompg(_ , D). We will
now show how the Tor homology groups are defined, which in a “dual” way determine what
happens to short exact sequences on the left after applying the right exact functor D ®p .

Let A and D be R-modules. Then D ®g A is an abelian group, and since R is a com-
mutative ring, D g A 2 A®r D. Then D ®p _ is a covariant functor that is right exact
which means that given a short exact sequence of R-modules 0 — A — B — C — 0,
the sequence

D@rA—D®RrB—DrC —0

is an exact sequence of abelian groups, which is not necessarily exact on the left. To define
Tor homology groups, we first find a projective resolution for A given by

dn dn— d d
i — PP = 2P S P A—0.

Then, applying the functor D ® _ to this resolution gives

1®dn—1
_> ..

.—sDoP, % pop, R e P ¥ Do P S DA —0

which is a chain complex, so we can find its homology groups.

Definition 6. For the setup in the preceeding paragraph, we define
Tor®(D, A) = ker(1®d,)/im(1®d,1)  with  Torf(D,A) = D® Py/im(1® d,)

to be the n'® homology group derived from the functor D ®p .

One can use exactness of the sequence at D® Py to show that Torl(D, A) =2 D® A. It can
also be shown that the homology groups Tor’ (D, A) only depend on the R-modules A and
D, not on the projective resolution for A that is chosen, and that Tor’(D, A) = Tor’(A, D).
Finally, we state the analogous theorem to Theorem 5 for Tor.

Theorem 7. Let 0 — A — B — C' — 0 be a short exact sequence of R-modules. Then
there exists a long exact sequence of abelian groups
o — Torf(D, C) 2% Tor®(D, A) — Tor®(D, B) —»
Tor?(D,C) 2 D@ A—D®B—D&C — 0
where the maps 9, are called connecting homomorphisms and the maps at the same level n
are induced by the short exact sequence.
Then Torf(D, C) is the first measure of the failure of exactness on the left of the functor

D ®pr , and so the sequence D ®p A — D ®r B — D ®r C — 0 can be extended to

9



a short exact sequence if and only if dy is the zero map. For an example of computing Tor
homology groups, see Example 18.

Definition 8. Let A, be a complex of finitely generated free modules over a field, given by

A : 00— A, — -+ — Ay — A — 0.

n

Then the Euler characteristic of the complex is x(A,) = Z(—l)i dim(A4;).

i=1
Proposition 9. Let A, be a complex as in the definition above. Then x(As) = x(H(As)),
where H(A,) is the induced complez in homology given by
H(A) © 0 — Hy(Ad) = Hy1(Ad) -2 -+ =% Hy(AL) =25 Hi(AL) — 0.

Proof. Suppose we have

On On 6 0
A, 0—+1>An—>An,1—>—>A2—2>A1H10

Let Z; =kerd; fori =1,...n and B; =imd;;; for : = 0,...,n. These are commonly called
cycles and boundaries, respectively. Let a; = dim(4;),b; = dim(B;), and z; = dim(Z;).
Observe that the First Isomorphism Theorem gives that B; = A;1/Z;1 fori=0,...,n — 1,
so for each of these i, we have b; = a;11 — 2;11. Then, by definition of homology groups, we
have H;(A,) = ker §;/im d;.1 = Z;/B;, which implies that dim(H;(A.)) = z; — b;. Also note
that a; = dim(A4;) = dim(ker ;) = dim(Z;) = 2. Therefore, we have

(—1)" dim(H;(A,))

n—1
=—z1+ Z(_l)H_l(zH—l + bz)
=1
n—1
=—a + Z( 1)y
i=1
= (—1)a; =Y (=1)'dim(4;) = x(Ad)
i=1 =1

]

Remark 10. An important fact about the Euler characteristic of a complex is that if A, is
exact, then x(A,) = 0. This follows easily from the previous proposition since H(A,) = 0 if
A, is exact.
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2.3 Free Resolutions Over the Polynomial Ring

In this section, we will present some of the material found in the first chapter of [2]. Let
S = k[zy,...,x,] be the polynomial ring in n variables over a field k. Let M be a finitely
generated S-module. We say that M is graded if M = EB M, where My is the component

dez.
of M in degree d. The Hilbert Function of M is defined to be

and Hilbert’s idea was to compute H);(d) by using a free resolution for M. The module
M (a) is the module M shifted, or twisted, by a and satisfies M(a)y = M, 4. For example,
S(—a) is the free S-module of rank 1 generated by an element of degree a. The following
corresponds to Proposition 2 and will also be used in later sections.

Proposition 11. Let R be a commutative ring with 1, and let M be a graded R-module.
Then for any d,e € Z and any n € N we have

(i) Homg(R(—d), M(—e)) = M(d — ¢) and
(i1) Hompg(R"(—d), R(—e)) = R"(d — e).

Proof. We will only prove (ii), since (i) follows from (ii) with n = 1 and R = M. Then
for (ii), let by,...,b, be a basis for R"(—d) such that each b; has degree d. Then any
¢ € Hompg(R"(—d), R(—e)) is determined by its action on this basis, that is, by ¢(b;) =
r; € R(—e). If v is degree-preserving, then the degree of r; in R(—e) must be d for each 7.
Therefore, r; € R(—e)y = Rq—_. for each i. So, ¢ is degree-preserving if and only if r; € Ry_.
for each i. However, there are many homomorphisms from R™(—d) to R(—e) which are not
degree preserving, so in general, we get that (¢(b1),...,0(b,)) = (r1,...,7) € R™"(d — €)
since each r; is in an R-module generated in degree d — e. O]

Returning to the prior discussion with S = k[xy, ..., z,], if M is a graded S-module, we
can construct a graded free resolution of M in the same way described on the bottom of page
7. Let m; € M be homogeneous elements of degree a; that generate M as an S-module, and

let Fyy = @ S(—a;). Then a graded free resolution of M is of the form

—)Flﬁ>E_1—>—>F1ﬂ>FO

where each F; is a graded free module. The kernel M; C Fy of the natural map Fy — M
is called the first syzygy of M. Note that we require all maps between graded modules to
be degree-preserving. A remarkable fact, known as the Hilbert Syzygy Theorem, is that
any finitely generated graded S-module M has a finite graded free resolution of length < n.
In other words, the projective dimension of M is < n. This is denoted by pd(M) < n, where
n is the number of variables in S.

11



We now give a few examples of a specific kind of complex, called Koszul complexes,
which are an important family of free resolutions.

Example 12 (Koszul Complexes). The first three Koszul complexes are

(i) Ko(z1) 10— 5(~1) g

(i) Ko(z1,22) 10 — S(—2) (Z2) s2(—1) %) g

1 ( 0 T3 12>
T2 —x3 0 x1
(iil) Ko(x1,29,23) : 0 —> S(—3) <z3 S3(—2) ~ 0 S3(—1) (o1 w2 25) o

Observe that (i) is a free resolution of S/(x;). Similarly, one can show that (ii) is a free
resolution of S/(x1,x2) and (iii) is a free resolution of S/(x1,zs, x3). These complexes can
be generalized to Ko(x1,...,z,) for any r < n, giving a free resolution of S/(z1,...,z,). In
particular, these complexes are important because Kq(x1,...,x,) is a free resolution of the
residue field S/(xy,...,z,) = k which will be used when computing other homology groups
in section 4.

Every finitely generated graded S-module M has a minimal free resolution, which
is unique up to isomorphism. This can be constructed in a similar way as a normal free
resolution where at each step we choose a minimal set of generators for the kernel of the
previous map. Formally, we say that a complex of graded S-modules

d;
Ce __9.}Q — }Q_l.__+...

is minimal if for each ¢, im9; C m - F;_;, where m = (x,...,x,) is the homogeneous
maximal ideal of S. The condition of minimality is equalivalent to the condition that in a
free resolution of S, none of the entries in the matrices representing the maps between the
F;’s are nonzero constants. For example, the Koszul complexes in Example 12 are minimal
free resolutions of S/(xy,...,x,). If M is a finitely generated S-module, then its minimal
free resolution will have the form

0— P S(—a) ) — ... — P S(—a)? M) 2 B S(—a)e ) — M — 0

a€Z a€Z a€Z

and it can be shown that pd(M) = r, the length of this resolution. In other words, the
minimal free resolution of M is as short as possible. Here 3; ;(M) denotes the 4, j-th Betti
number of M, which is an important invariant of M that is equal to the minimal number
of generators of F; in degree j. To compute the Betti numbers of M one often uses the
following equality:

Bi; (M) = dimy, Tor? (k, M); = dimy, H;(Ke @ M);

where Ky = Ko(21,...,2,). This allows one to find the Betti numbers without actually
constructing a minimal free resolution of M, which is usually very tedious. Instead, one can
tensor M with the Koszul complex and take the reduced homology of the resulting complex.

12



Another invariant which can be defined using the Betti numbers of M is the Castelnuovo-
Mumford regularity of M, denoted reg(M). This is defined as the smallest integer d such
that f;;14(M) # 0 for some 4, but 3; ;1411(M) = 0 for all 4, that is

reg(M) = max{d | B;;+a(M) # 0 for some i}.

Another way to compute the regularity of M, which we will use several times in the next
section when M is a monomial ideal, is to find the abelian groups Exty(M,S) and use the
equality

reg(M) = max{—i — j | Ext4(M,S); # 0}.

Suppose M is a graded S-module that is generated in degree d. Then we say that M has
a linear resolution if f,;;(M) = 0 for every j # d, that is, if the only nonzero Betti
numbers have the form f;;.4(M). Further, one can show that M has a linear resolution
if and only if reg(M) = d. In this case, the maps in the minimal free resolution of M are
given by matrices of linear forms. We will explore linear resolutions of monomial ideals more
extensively in the remainder of this thesis.

3 Monomial Ideals

The concepts introduced in this section can be found in many sources. In the first subsection,
we will focus on how monomial ideals are presented in Chapter 1 of [3] and Chapter I of [4].
In the second subsection, we will present simplicial complexes and their homology as seen
in Chapter 1 of [3]. Finally, in the third subsection, we will introduce a few concepts from
graph theory and edge ideals as found in Chapter 9 of [5].

3.1 Introduction to Monomial Ideals

Let S = k[xy,...,x,] be the polynomial ring in n variables over a field k. A monomial in S

is an element of the form z{* --- 2% where each a; € N (possibly zero). An ideal [ C S is a

monomial ideal if it is generated by monomials. Additionally, a monomial is squarefree
if each a; € {0,1}, and I is a squarefree monomial ideal if it is generated by squarefree
monomials. An important observation about monomial ideals is that I is a monomial ideal
if and only if for every polynomial f € I, all of the monomials in f belong to 1.

Proposition 13 (Properties of Monomial Ideals). Let I and J be a monomial ideals in S.
Then we have the following properties:

(i) INJ is a monomial ideal,
(i1) I1.J is a monomial ideal,
(iii) /I is a monomial ideal,
(iv) I is a prime ideal if and only if I = (x; | i € A) for some A C{1,...,n},

(v) I is a radical monomial ideal, i.e. I = V1, if and only if I is a squarefree monomial

ideal.
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To every monomial x7" --- x%" in S, we can associate a unique vector d = (ay,...,a,) in
N", often called the exponent vector. Let Sz denote the vector subspace of S spanned by
it - xln o that is Sz = k{x]* - - - 2% }. Then, as a k-vector space, we can view the polynomial
ring S as the direct sum of all possible Sz with @ € N". This gives

S:@Sﬁ

aeNm

and since Sz - Sy = S, 5, we say that S is multi-graded or N"-graded as a k-algebra. Then
monomial 1deals are the N"-graded ideals of S, and we can write them as a direct sum,
I = @k{z} 2%}, where the sum is over all monomials z{' - --z% € I. Recall that in
section 2.3 we used that S is graded with respect to Z, which is often called a “coarse”
grading of S, whereas multi-grading is a “finer” grading of S. Both gradings can be used in
this context, but it’s important to distinguish which grading is being used.

When working with monomial ideals in S, an important consequence of the Hilbert Basis
Theorem, which says that every ideal in S is finitely generated, and the grading on S is that
every monomial ideal I C S has a unique, finite generating set of monomials. Thus, we can
write I = (my,...,m,) for a unique, minimal set of monomials m;. If some positive power
of each variable z; appears in this minimal set of generators (so must have r > n), then I is
said to be artinian. Let the degree of a monomial be given by deg(m) = deg(x}* - 2%") =
a; + -+ a, € N. If all of the minimal monomial generators of I have the same degree,
say d, then we say that [ is generated in degree d. Throughout the remaining sections,
we will frequently work with the ring S/I as both a k-vector space and an S-module. The
following proposition will make it easier to compute the dimension of S/I in a given degree
as a k-vector space.

Proposition 14. [4, Prop. 1.8] Let I C
for every i € N the k-vector space (S/1I); =
such that m ¢ I, deg(m) =1i}. So, dimy(S/1
degree v that are not in I.

= kl[z1,...,2,] be a monomial ideal. Then
i/ I; has a basis given by {monomials m € S
)i s equal to the number of monomials in S of

In order to use this proposition, it is useful to know the number of monomials in S of a
certain degree, that is dim S;. A combinatorial argument shows that

n—i—d—l)

As in section 2.3, we can construct the minimal free resolution of a monomial ideal I C

S and find its Betti numbers. Depending on the grading that we are using, these Betti

numbers are either of the form 3;;(I) in the graded case, or (;z(/) where @ € N" in the

multi-graded case. In both cases, the Betti numbers of S/I are the same as the Betti

numbers of [ shifted by one spot. This is because the minimal free resolution of I starts

with - -+ — F} — Fy — [ — 0 whereas the minimal free resolution of S/I starts with
- — F — Fy — S — S/I — 0. Therefore, we have

Bij(I) = Bix1;(S/1)  or  Bia(l) = Biy1a(S/I).
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This implies the equality
reg(l) =reg(S/I)+1

which we will use later on when computing the regularity of specific monomial ideals. Again,
if I is a homogeneous monomial ideal generated in degree d, then [ has a linear (minimal
free) resolution if and only if reg(I) = d.

3.2 Simplicial Complexes

We will now introduce simplicial complexes, which are closely related to squarefree monomial
ideals. Let [n] = {1,...,n} represent a vertex set. A simplicial complex A on [n] is a
collection of subsets of [n], called faces, which are closed under taking subsets. Therefore,
if o € Ais aface and 7 C o, then 7 € A is also a face. If 0 € A is a face with i + 1 vertices,
i.e. |o| =i+ 1, then o has dimension ¢ and is called an i-face of A. The empty set & is a
face of every simplicial complex, and it is the only face with dimension —1. The maximal
faces of a simplicial complex are called facets and, since faces are closed under taking
subsets, a simplicial complex is determined by its facets. We are interested in simplicial
complexes because they correspond to squarefree monomial ideals. To see this, we identify
each face o C [n] with its squarefree vector, which has a 1 for each vertex in the face and
a 0 otherwise. For example, 0 = {2,5,6} C [7] has squarefree vector (0,1,0,0,1,1,0). We
can then write x” = ], x;, associating to ¢ a squarefree monomial. For our example we’d
have x? = xox516. Then, every simplicial complex A corresponds to a squarefree monomial
ideal called the Stanley-Reisner ideal of A which is given by

In=&"|T7¢A).

Therefore, the Stanley-Reisner ideal of A is generated by the squarefree monomials asso-
ciated to the nonfaces of A. This correspondence between a simplicial complex and its
Stanley-Reisner ideal actually creates a bijection between simplicial complexes on [n] and
squarefree monomial ideals in S = k[xy,...,z,)].

Next, we will relate the topics from section 2 to simplicial complexes (and hence, to
squarefree monomial ideals) by defining the reduced chain complex and reduced cochain
complex of a simplicial complex. Let A be a simplicial complex on [n]. Let F;(A) be the set
of i-faces of A for each integer i. Then, let k(%) be a k-vector space with basis elements e,
that correspond to the i-faces o € F;(A).

Definition 15. The reduced chain complex of A over k is the complex
Co(Ajk) 0 — EFr1@® Zoh oy BRI iy pRa @)y oy g Pa(d)

The boundary maps d; are defined by setting sign(j,o) = (—1)""1 if j is the r** element

of the set 0 C {1,...,n}, written in increasing order, and
di<60) = Z Sign(ju O>6a\j-
jEo
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This is a complex because d; o d;y1; = 0 for each i, so we can find its homology groups. For
each 7, the k-vector space

in homological degree i is the i'" reduced homology of A over k.

We note that the dim Hy(A; k) = (# of connected components of A)—1. We can similarly
define the dual notion of the reduced cochain complex of A over k, é’(A; k), as the vector
space dual of é.(A; k) with coboundary maps d' which are the vector space duals of d;.
Then we have that

HY (A k) =ker d™/im d’

is the i'" reduced cohomology of A over k. Since vector space duality preserves exact
sequences, there is a canonical isomorphism H'(A; k) = H;(A;k)*, where (_)* denotes the
vector space duality Homy( , k).

To each simplicial complex A we can associate another simplicial complex, called its
Alexander dual AY = {[n]\ 7 | 7 ¢ A}, consisting of the complements of the nonfaces
of A. We will use the Alexander dual of A in the next section when discussing Hochster’s
Formula.

3.3 Graphs and Edge Ideals

Finite, simple graphs are a specific kind of simplicial complex which have maximal facets of
dimension at most 1, so everything in the previous section can be applied to graphs. We will
introduce the necessary graph theory concepts and will see that finite, simple graphs are in
bijection with squarefree monomial ideals generated in degree two.

Let G be a finite, simple graph (no loops or parallel edges) on [n] = {1,...,n} with edge
set E(G). From now on, every graph mentioned will be a finite, simple graph. If W C [n]
is a subset of vertices, the induced subgraph of G on W is denoted Gy and contains the
edges {i,7} € E(G) with i,7 € W. The complete graph on [n] is the graph G on [n] that
contains all possible edges, that is {i,j} € E(G) for all i # j € [n]. The complement
graph of G, denoted G, is the graph on [n] whose edge set contains all of the non-edges
of G, that is {i,j} € F(G°) if and only if {4,j} ¢ E(G). A graph G is connected if for all
i # j € [n] there is a sequence of edges of the form {{{i, i}, {ia,i3},...,{ir—1,7}} between
7 and j. A cycle of G of length /¢ is a subgraph C' of G such that

E(C) = {{i1,d2}, {ia, i3}, .-, {iv—1, 0}, {is, 01} },

where i1, 42, ..., 7, are vertices of G such that ¢; # i,, for j # m. A chord of a cycle C'is an
edge {7, 7} of G such that i and j are vertices of C with {7, j} ¢ F(G). A graph G is chordal
if every cycle of length greater than three in G has a chord. Every induced subgraph of a
chordal graph is also chordal. A subset W C [n] is a clique of G if {7, j} € E(G) for all
i # j € W. The clique complex of a graph G on [n] is the simplicial complex A(G) on [n]
whose faces are the cliques of G.
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Consider again the polynomial ring S = k[x1, ..., x,] over a field k, and let G be a graph
on [n]. As in section 3.2 above, we associate to each edge {i,j} € E(G) the monomial z;x;.
Then the edge ideal of G is the squarefree monomial ideal I(G) = (x;z; | {i,j} € E(G)),
which is generated by the edges of G. Note that since an edge ideal I(G) is generated in
degree two, it will have a linear resolution if and only if reg(/(G)) = 2. Next, consider the
clique complex of G¢; A(G°), whose faces are the cliques of G¢. The Stanley-Reisner ideal of
A(G°) is generated by the minimal nonfaces of this complex, which are exactly the edges of
G. Therefore, we have that the edge ideal of G and the Stanley-Reisner ideal of the clique
complex of the complement of G are the same:

Every graph on [n] corresponds to a squarefree monomial ideal generated in degree two,
namely its edge ideal. Conversely, any squarefree monomial ideal generated in degree two
in S = k[zy,...,,| is the edge ideal of graph on [n] (take a minimal set of generators z;z;
for the ideal, each of which corresponds to an edge in the graph). Thus, there is a one-
to-one correspondence between finite, simple graphs on [n] and squarefree monomial ideals
generated in degree two via edge ideals.

4 Useful Applications

In this section, we will describe a few useful applications of the homological algebra concepts
from section 2 in studying monomial ideals and simplicial complexes. These will include
Hochster’s Formula for computing Tor groups of Stanley-Reisner ideals of simplicial com-
plexes and the reduced Mayer-Vietoris exact sequence, which will both be used in the proof
of Froberg’s Theorem, the main result of this section. To start, we give a formula for the
dimension of the first reduced homology group of a connected graph.

Proposition 16. Let G be a connected graph on [n] with edge set E(G). Then, viewing G as
a one-dimensional simplicial complex over a field k, we have dimy(H,(G; k)) = |E(G)|—n+1.

Proof. The reduced chain complex of GG given by Definition 15 is

Co(Gi k) = 0 — EP(G) 2y (@) fo, pFal@)

where kf-1(G) = | |Fo(@) > pn - and (G = BIEG] hecause the empty face is the only face
of dimension —1, there are n vertices, or dimension 0 faces, and there are |E(G)| edges, or
1-dimensional faces. Thus, we can consider the complex

G. : 00— KIB@I Dy g o g )

Taking reduced homology of this complex and using the fact that G is connected gives
H(G,) : 0 — Hi(G;k) — 0. Then Proposition 9 applied to the the induced complex

in reduced homology gives that x(G,) = x(H(G,)), where x is the Euler characteristic.
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Therefore, we have
(1) -1+ (=1)% 0+ (=1)*- |E(G)| = (—1) - dimy,(H1(G; k)

which implies dimy(H,(G; k) = |E(G)| —n + 1.

More generally, if G is not connected, then it can be shown that dimy(H,(G; k)) = |E(G)| —
n + (# of connected components of G) since dim Hy(G) + 1 is the number of connected
components of G. O

Next we state Hochster’s Formula and give an example to illustrate the theorem, which
can be formulated in many ways and in a variety of settings. Notationally, for @ € Z", the
support of @ is denoted by supp(a@) and is the subset of [n] = {1,...,n} corresponding to the
nonzero entries of @. Recall that I is the Stanley-Reisner ideal of a simplicial complex, which
is generated by its nonfaces. For a subset of vertices W C [n], we denote the restriction
of A on W by Ay, which contains all of the faces of A that consist only of vertices in W.
Lastly, recall that there is a canonical isomorphism H;(A; k)* = H'(A; k).

Theorem 17. [5, Hochster’s Formula, 8.1.1] Let A be a simplicial complex on [n] and let
aeZ". Then

(i) Tor? (k,In)gz = 0 if @ is not squarefree, and
(i) if @ is squarefree, and W = supp(@), then Tor? (k, In)s = HWI==2(Ay; k) for every i.

Using that B, z(Ia) = dimy, Tor? (k, Ia)z, this shows that all nonzero Betti numbers of
In (and, subsequently, of S/IA) lie in squarefree degrees. Although we will not present the
proof of this theorem, the proof given in |5] utilizes that for a simplicial complex A on [n],
we have H,_;_1(A;k) = H72(AY; k) for each i, where A is the Alexander dual of A, as
defined at the end of section 3.2. Consider the following example.

Example 18. Let n = 3 and let A be the simplicial complex on [3] = {1,2,3} with facets
{1,2} and {3}. Then the Alexander dual A" consists of the complements of the minimal
nonfaces of A. The minimal nonfaces of A are {2,3} and {1,3}, so A" has facets {1} and
{2}. Pictorally, we have

A= / AV =

1 3 1

Since n = 3, we should have H,_;(A; k) = H'~2(AVY; k) for each i, and we will check that this
isomorphism makes sense for this example. The reduced chain complexes of these simplicial
complexes are given by
1
(%)

CoDk) - 0 — k2 3 My g

Co(AV:E) 0— k2 M o
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Computing reduced homology gives:

H_((Ak)=k/im(111)=k/k=0 HY (AY: k) =0

: sean (1) (1)) ; :
Hy(Aik) = A = spanf (1))} AO(AY k) = span{( )}
spen( (1))
Hi(A;k) =0 H YAV k)= k/k=0
Hij(Ask) =0, for j < —1,j>1 H)(AY: k) =0, for j < —1,7 > 0.

Observe that dim H,_;(A; k) = dim H"2(AV; k) for each i. Also, note that we could have
computed dim Hy(A; k) = (# connected components) — 1 =2 — 1 = 1, and by the previous
proposition, we have dim F[l(A; k)=1-3+2=0.

Then to see how Hochster’s Formula applies to this example, we consider K, (1, 22, 23) @5 Ia
where ICo(1, 2, 23), the Koszul complex, is the minimal free resolution of k and we have
IA = (x1x3, z973). Using the multi-grading on S = k[xy, xo, z3], this complex is

IA(—(1,1,0)) IA(—(1,0,0))

D S,
0 — In(—(1,1,1)) —> Ia(—(0,1,1)) —IA(—(0,1,0)) — In — 0
S,
(07

[A(—(l,O,l)) IA(_ 071))

Notice that taking this complex in any non-squarefree degree gives a complex that is exact.
Therefore, as in (i) of Theorem 17, since Tor groups are the homology groups of this complex,
we have Tor? (k, In)z = 0 if @ is not squarefree. Consider @ = (1,1,1). Then W = {1,2,3}
and Ay = A, and the isomorphism shown above gives

AWIS2( Ay k) = H - (Awi k) 2= Hioy(Aw)Y k).

We want to show that this is the same as Tor?(k,Ia)s for each i by showing that the
complexes that these homology groups come from are essentially the same. Taking the
above complex for KCq(21, 22, x3) ®g Ia in degree @ gives

k{x2$5}
0— @ — k’{l’lﬂfgﬂfg} — 0.
k{l’lfﬂg}
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Observe that this is essentially the same as the complex C,(AY; k) which is given by

k{x.}
0— @ —k—0

k{xa}

and notice that the corresponding terms in these two complexes are generated by faces that
are complements. Therefore, we have shown that for @ = (1,1,1), we have Tor? (k, In)s =
HWI==2(Ay; k) for every 4, which is (ii) of Theorem 17.

The following theorem will also be used to prove Froberg’s Theorem, and since it combines
several of the main concepts presented in sections 2 and 3, we provide a proof as well.

Theorem 19. [5, 5.1.8] Let Ay and Ay be simplicial complezes on [n| over a field k. Let
A=A UAy and I' = A1 N A,. Then the reduced Mayer-Vietoris sequence given by

o —Hy(Ts k) — Hi(Ars k) @ Hy(Ags k) — Hi(A; k)
18 exact.

Proof. To prove that this is an exact sequence, we will use the theorem that is dual to
Theorem 3 for reduced homology which says that every short exact sequence of complexes

00— Ay — Bs —Co — 0
gives a long exact sequence of reduced homology groups
0 — H,(A) — H,(B,) — H,(C.) — Hp_1(AJ) — Hy1(B)) — - -

where n is the maximum length of A,, B,, Cs. To do this, we need to define an appropriate
short exact sequence of complexes. First, we find the reduced chain complexes of Ay, As, A,
and I' as in Definition 15 and denote them by

A =Co(Ti k), Boe=Co(A; k) ®Co(Ass k),  Co=Co(AK).
Define maps between these complexes as follows:

o; A — B;
o (0,0) for 0 € F;(I") since I' = A; N Ay, and
Bi : B — C;
(01,09) = 01 — 09 for o1 € F;(A1) and 09 € Fi(Ay).

Then for each i and every o € F;(I') we have f3; o a;(0) = Bi(0,0) = 0 — 0 = 0. Therefore,

0— A, 25 B; L C; — 0 is a complex for each i. To show each of these complexes
is exact, we need to show that «; is injective and f; is surjective with im a; = ker ;. Let
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Z a,0 € A; with a, € k. Then ai(z ,0) = (Z (y0, Zaga) = 0 if and only if each
ceF;(T) o o o
term is zero, which is equivalent to the fact that a, = 0 for every o € F;(T"), which implies

Zaga = 0. Thus, «; is injective. Now let 0 € F;(A) and recall that A = Ay U Ay, If

o € F;(Ay), then we have f5;(0,0) = o, and if 0 € F;(A,), then we have (3;(0,—0) = o.
Thus, f; is surjective. Then im «; is generated by all elements (o, o) where o € F;(T"), which
implies 0 € F;(A1) and 0 € F;(A,) since I' = Ay N A,. Similarly, ker ; is generated by all
elements (0,0) in B; where 0 € F;(A;) and o € F;(A,). Thus, im «; = ker f;.

Since we’ve shown that each column in the following diagram is an exact sequence, to show
that this is a short exact sequence of complexes, we need to show that this diagram commutes.

0 0
+ 4 +
> 14z > Ai—l E—
(6% Qi—1
+ 4 +
> B; > B ——
Bi Bi—1
+ 4 +
> C; >y (i ——
0 0

To show that the top square commutes, let o = (ny,...,n;) € F;(I'). Then

;1 0d;i(0) = a;q <Z(—l)j(n1, ce T, ,n2)>

J

Thus, a;_1 od; = d; o oy, so the top square commutes.
For the bottom square, then oy € F;(A;) and oy € F;(As). Then (01,0,) € B; and we have

Bi—10di(01,02) = Bi—1(di(01),di(02)) = di(01) — di(02) and
d; o Bi(01,09) = di(01 — 09) = d;i(01) — d;(02).

Thus, £;_1 od; = d; o 3;, so the bottom square commutes.
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Therefore, we have constructed a short exact sequence of complexes

0— As -2 B, 55 € — 0
which gives a long exact sequence of reduced homology groups
oo — Hi(A)) — Hi(B,) — Hi(Cy) — H;_1(A)) — Hi_1(By) — - --
By our construction, this is precisely the Mayer-Vietoris sequence

oo = H(Ds k) — Hi(A k) @ Hi(Ags k) — Hi(As k)
— ffl_l(f‘, k,’) — gz’—l(Al; ]{f) D ﬁi_l(Ag; k’) — F[i_l(A; k’) e S

so it must also be exact. O

4.1 Froberg’s Theorem

We now have the necessary tools to prove Froberg’s Theorem, which characterizes all edge
ideals with linear resolution by a remarkably simple combinatorial property. In fact, this
theorem says precisely when a given squarefree monomial ideal generated in degree two has a
linear resolution, by the correspondence described at the end of section 3.3. We will present
the proof of this theorem that is given in chapter 9.2 of [5].

Let G be a graph on [n]. Then we say that G is decomposable if there exist proper
subsets P and @ of [n] with PUQ = [n] such that PN Q is a clique of G and {i,j} ¢ E(G)
for every 1 € P\ @ and every j € @\ P. Recall that a chordal graph is one in which every
cycle of length greater than 3 has a chord.

Lemma 20. Fvery chordal graph which is not complete is decomposable.

We will not give the proof of this lemma, which is entirely graph-theoretic and given in
full detail in Lemma 9.2.1 of [5]. However, we will give the proof of the following corollary,
and will then describe an example to illustrate the proof.

Corollary 21. Let G be a chordal graph on [n] and let A(G) be its clique complex. Then
H;(A(G); k) =0 for every i # 0.

Proof. We will show that H;(A(G);k) = 0 for every i # 0 by induction on the number of
vertices n. First, suppose n = 1. Then G = A(G) = {1} is just a point, so H;(A(G);k) =0
for every i. Suppose that H;(A(G); k) = 0 for every i # 0 holds for graphs on [n — 1], and
let G be a chordal graph on [n]. If G is a complete graph, then A(G) is a n-simplex. Thus,
H;(A(G); k) = 0 for every i (this is a standard result about simplices, see [5, Example 5.1.9]).
So, suppose G is not complete. Then by the above lemma, G is decomposable, so there exist
proper subsets P and @ of [n]| such that PUQ = [n|, PN Q is a clique of G, and for every
i€ P\Q and every j € Q\ P we have {i,j} ¢ F(G). Let

A=AG), A =A(Gp), Ay=A(Gy), and T =A(Gpg).
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Then A = A;U Ay and I' = A; N A,. Since G is chordal, the induced subgraphs Gp and
G are also chordal. Each of Gp and G has strictly less than n vertices since P and () are
proper subsets, so the inductive assumption gives that ﬁi(Al; k) = 0 and ZZ[Z-(AQ; k) = 0 for
every i # 0. Since P N Q is a clique of G, we know that I' is a simplex, so H;(I'; k) = 0 for
every ¢. Then Theorem 19 gives that the Mayer-Vietoris sequence

is exact for i # 0. Hence, H;(A; k) = 0 for every i # 0. O

Consider the following example for n = 5. Let G be a graph on [5] with edges 12,13, 23,24, 34,
and 45. Then A(G) has facets 123,234, and 45. Pictorally, we have

2 4 2 4
YAVENEELLY N
1 3 5 1 3 5
Then G is a chordal graph that is not complete, so we know it is decomposable by the lemma.
Let P ={1,2,3,4} and Q = {2,3,4,5}. These are proper subsets whose union is all of the

vertices and whose intersection is {2, 3,4}, which is a clique of G. We also have that 15 is
not an edge of G. As in the proof of corollary, we have

2 4 2 4 2 4
1 3 3 ) 3

Observe that we do indeed have A = /A, U Ay and I' = A; N Ay. Thus, we can use the
Mayer-Vietoris exact sequence to see that H;(A(G); k) = 0 for all i # 0.
We will now prove the main result of this section using the previous lemma and corollary.

Theorem 22 (Froberg’s Theorem). The edge ideal 1(G) of a finite graph G has a linear
resolution if and only if G is chordal.

Proof. Let G be a graph on [n]. As described in section 3.3, I(G) = Ia(e), so it suffices to
show that Ia(ge) has a linear resolution if and only if G is chordal. We know that I(ge) has
a linear resolution if the only nonzero Betti numbers are of the form g; HQ(IA Ge) ). We also
know that 8; ;j(Ia(ce) = dim Tor? (k, Ia(ce));, and Hochster’s formula (Theorem 17) gives
that Tor? (k, Iaqe))w| = F['W|_i_2(A(GC)W; k) for each i when W = supp(d) with @ € Z"
squarefree. Therefore, f; w((Iacey) = dim f['W|_i_2(A(Gc)W;k). This implies that Iage)
has a linear resolution if and only if H(A(G®)w;k) = 0 for all i # 0 (that is, |[W| # i + 2)
and all subsets W C [n].

Suppose G¢ is not chordal. Then there exists a cycle C' of length greater than 3 which does
not have a chord. Let W be the vertices of C' and say |W| = ¢ > 4. Since C is a cycle with
no chord, it also has £ edges. Then Proposition 16 gives that dlmk(Hl(C’ k)=0—(+1=1.
But A(GC)W is exactly the same as C, so we have HY(A(G)w: k) = Hy(C; k) # 0. Thus,
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In(Gey does not have a linear resolution.

Now suppose that G° is chordal and let W C [n] be arbitrary. Then A(G®)y is the clique
complex of restriction of G¢ to W, i.e. G¥Y,, which is also chordal. The corollary then gives
that H;(A(G)w; k) = 0 for every i # 0. Since H;(A(G)w; k) = H{(A(G)w; k), this implies
that Ia(ge) has a linear resolution. ]

5 Computing Exts(S/I,S) for Monomial Ideals

First, we show how to find the cohomology groups Ext%(M,S) where M is one of a few
specific S-modules. Recall that for a € Z, k(a) is a copy of k generated in degree —a.

Proposition 23. Let S = k[zq,...,x,] and let m = (1, ...,x,). Then we have
, 0 ;

(i) Bxti(S/m,s) =% 1F™

k(n), i1=n
0, 1#n

3 4 D (1)
(i) For j > 1, Extg(m?/m/t S) = J .
B kn+j), i=n
1

0, 1#n
a-1 (") .
k(n)+EB P kn+j), i=n

Proof. For (i), we apply the left exact functor Homg( ,.S) to a projective resolution of S/m.

(iti) For d > 1, Ext4(S/m?,S) =

We will use the Koszul complex Ko(1,...,2,) (see Example 12) which is a minimal free
resolution of S/m. Then Ext%(S/m, S) is the i cohomology group derived from the functor
Homg( ,S), and since Homg(Ke(x1,...,z,),S) is also a Koszul complex up to a degree

shift, all of these cohomology groups will be zero for i < n — 1. For i = n, using Proposition
11, we have Ext$(S/m,S) = Homg(S(—n),S)/m = S(n)/m = k(n).
For (ii), we use that as an S-module we have

(T1,.. ., 2n)?
(1, .., xp)I

n+j.'71)

= §/m(—j)(""

m? /mi Tt =

where we have used that dim S; = (”*;71) (see page 14). Then using that Ext commutes
with finite direct sums gives

(1)
Excty((m? /m?*1, ) = Extis(S/m(—)"7 ), 9) = @D Exty(S/m(—j),S)-

1

By part (i) and Proposition 11 we have Ext%(S/m(—j),S) = 0 for i <n — 1 and for i = n
we have Ext$(S/m(—j),S) = k(n + 7).
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For (iii), consider the filtration 0 C m®!/md C --- C m?/m¢ C m/m? C S/m?. Then we
have the short exact sequence

0 — m/m? — S/m? — S/m — 0,
and we know Ext of the last term, so we find a short exact sequence with the first term
0 — m?/m? — m/m? — m/m?* — 0,
and continue this process until we get
0 — m¥/m? — ma2/m? — ma2/m?t — 0

at which point we know Ext of each term in the complex except the middle term by part
(ii). The second through last short exact sequences give

Ext(m/m?, S) = Exti(m/m?, S) @ Exty(m?/m?, S) @ --- @ Exty(m®!/m?, S)
-1
= @Extis(mj/mjﬂ,S)
j=1

0, 1#n
e
@ @ k(n+j), i=n.

Then taking the long exact sequence in cohomology coming from the first short exact se-
quence (Theorem 5) gives that Exty(S/m?,S) = 0 for all i <n — 1 and for i = n we have
the short exact sequence

0 — Bxt?(S/m,S) — BExt%(S/m?, S) — Exte(m/m?,S) — 0
Thus, we have

L (")
Ext?(S/m? S) = Ext(S/m, S) + Ext%(m/m?, S) = k(n +@ EB k(n+ 7).

]

It is worth noting that the third part of the above proposition proves that m¢ has a linear
resolution for all d > 1. Indeed, we have

reg(m?) = reg(S/m?) + 1 = max{—i — j | Exty(S/m% S); #0} +1
=max{n—n,n+1—-n,....n+d—1—-n}+1=d

and since m?

resolution.

is a homogeneous ideal generated in degree d with reg(m?) = d, it has a linear
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5.1 In the Polynomial Ring with Two Variables

Let S = k[z,y] be the polynomial ring in two variables over a field, k, and let I be an
arbitrary monomial ideal in S. In this section, we will show how to compute Ext(S/I,.S)
by considering two cases: when [ is artinian, and when [ is not artinian.

Case 1: ] is artinian

If I is artinian, then we can find a minimal set of monomials that generate I which
includes some power of x and some power of y, so that we get

I = <$p17yp2,m17 R ,mr> for some D1, P2, T = 07 mj = xajyﬂj cS.

If I =S, then I = (1), and Ext%(S/I,S) = Ext%(0,5) = 0 for all 4.
So, suppose that I # S, then S/I is nonzero and we have py,ps > 1 and «a;, 3; > 1 for each
j (if r > 1). In order to visualize I as a subset of R?, consider the set of points

A= {(p170)7 (Ova)} U {(aj’ﬁj) | mj; = 'xajyﬁjaj = 17" : ,7“}.

This set contains the exponent vectors of the minimal generating set of I. Plotting these
points in the first quadrant of R?, we can see that the points in A outline a staircase. The
ideal I can then be visualized as the set containing this staircase and all of the points above
and to the right of the staircase. We illlustrate this idea with an example.

Example 24. Let [ = (2%, ¢, zy*, 2%y) C S. Then A = {(4,0),(0,5),(1,4),(2,1)} and we
can visualize I in R? as the shaded region below which extends upward and to the right.

exponent of y

1 2 3 4 5 ¢ exponentofw

We can then easily visualize S/ as the part of the first quadrant not contained in I. Since
we are only concerned with points having integer coordinates (as these are the only possible
exponent vectors), consider these points in S/I and let each point with both coordinates
nonzero represent the unit square in the plane of which it is the upper-right corner. To each
of these squares in S/I we assign a value in the following way:
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Let (a, 3) be the upper-right corner of a unit square in S/I. Then the value of
that square is —(a + ).

For our example, we have

exponent of y

1 2 3 4 5 ¢exponentofxw

Observe that since [ is artinian, there are only finitely many integer points in S/I, and
hence, finitely many unit squares in S/I. We are now ready to compute Ext(S/1,S) in this
case.

Proposition 25. Let I be an artinian monomial ideal in S = klx,y], and write
I = (P yP> my,...,m,) as above. Denote the values of each of the unit squares in S/I by
dyi,...,d,. Then we have

k(—dy) ® k(—ds) ® - ® k(—d,), i=2

Ext%(S/I,8) = {0’ P20

Therefore, each unit square in S/I corresponds to a copy of k generated in degree d; in

Ext3(S/1, S).

Proof. We will prove this by induction on the number of unit squares in S/I. If there is
one square, then we must have I = (z,y) = m and this square has value d; = —2. By
Proposition 23, we have

k(2), 1=2

Extiy(S/m, §) = {0 o

so the proposition holds in this case.
Now suppose that S/I has n unit squares with values given by dy,...,d,. Without loss
of generality, we can assume that |d,| > |d;| for each j = 1,...,n. Let J be the ideal
containing I and the unit square with value d,. Then S/J has n — 1 unit squares with
values dy,...,d,_1, so the inductive assumption applies. We have the following short exact
sequence

0—S/J—S/I —J/[ —0
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which (by Theorem 5) gives the long exact sequence in cohomology

0 — Ext3(J/1I,S) — Ext2(S/I,S) — Ext2(S/J,S)
— Bxts(J/I,S) — Extg(S/I,S) — Extg(S/J,S)
— Bxt%(J/I,8) — Ext%(S/I,S) — Ext%(S/J,S) — 0.
Consider that J/I 2 (vector space generated by unit square with value d,,) = k-2%y” where
dy, = —(a+1+5+1) = —(a+ B+ 2), ie. («,0) is the lower-left corner of the square.
Then the S-module homomorphism ¢ : S(d, +2) — k- 2%y® such that 1 — 2%9” is

surjective and has ker¢ = (x,y) = m. Thus, the first isomorphism theorem gives that
J/I = k- x2yP = S(d, +2)/m as an S-module. This gives

k(2 — (dy +2)) = k(—dy), i=2

Ext(J/1,S) = Exty(S(d, +2)/m,S) = {0 it

Using this and the inductive assumption, the long exact sequence then becomes

0 — 0 — Ext2(S/I,S) — 0
— 0 — Extg(S/I,8) — 0
— k(—=d,) — Ext%(S/I,8) — k(—d,) @ -+ @ k(—d,y1) — 0.

Exactness then gives that

(=) @ - @ k(—dus) ® k(—d,), i=2

Exts(S/1,5) = {0, i 49

which completes the proof. O

Now, we will consider monomial ideals in S = k[z, y] which are not artinian.
Case 2: [ is not artinian

Suppose [ is a monomial ideal in S that is not artinian. Then, as in Case 1, we can find
a minimal set of monomials my,...,m, that generate I, where each m; = 2%y% for some
a;, B; € N, not both zero since I # S. Similarly, we can form the set

A= {(a, B) | mj=a%yP j=1,....r}

and visualize I in R? using the staircase formed by the points in A. Since I is not artinian,
this staircase will not “touch” both the z and y axes. Therefore, S/I will now contain
infinitely many unit squares.

Example 26. Let I = (z%y® 2%y? 2%y) C S. Then A = {(2,3),(4,2),(5,1)} and we can
visualize I in R? as the shaded region in the graph below which extends upward and to the
right.
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exponent of y.

4

\

1 2 3 4 5 éexponéntofx

In order to relate this case to the artinian case, let
a =min{e;} and [ = min{p;}.

Then drawing vertical and horizontal lines upwards and to the right of the point («a, )
produces an illustration that looks like and artinian ideal staircase with the origin shifted
to (v, ). This also breaks up S/I into two sections: a finite set of unit squares in (x%y?)/I
and infinite rows and columns of unit squares not in (z%y?). We will assign values to each
of these unit squares depending on which section of S/I they are in.

If a unit square is in (z*y”) /I and has upper-right corner (s, t), then it is assigned
the value d = —(s+t), exactly as in Case 1. If a unit square in S/I is not in (x®y”)
and has lower-left corner (s,t), then it is assigned the value e = s +t — (o + ).

For the previous example, we have («, 5) = (2,1) and our graph is as follows.

exponent of y

45
304
6
2|3
5
1|2
4
01
3
—1] 0 |-6|-7
2
—2|-1|-5|—-6]-7
1
—3|-2[-1]0]1]2]|3|4

1 2 3 4 5 é eXpOIléIlt of x
We are now able to compute Ext%(S/I,S) by utilizing this setup.
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Proposition 27. Let I be a monomial ideal in S = k[z,y| that is not artinian. As above,

write I = (my,...,m.) with m; = z%y% for j = 1,...,r, and let a = min{a;}, =
min{B;}. Let di,...,d, denote the values of the unit squares in S/I contained in (xz*y®)/I,
and let ey, ey, ... denote the values of the unit squares in S/I not contained in (x%y°)/I.

Then we have

k(—dy) ® k(—do) @ - @ k(—dy), i=2
Eth(S/[,S) = k(—el)@k(—eg)@--- ) 1=1
0, i£1,2.

Proof. We proceed by induction on the number of unit squares in (z®y?)/I.
If there are no unit squares, then I = (x*y”), and we need to show that

, k(— k(— ey =1
Exti(5/1,5) = 4 - Dh(ze) @y i
0, 1 # 1.
First, we find Extjs(I,S), viewing I as an S-module. The complex given by
0— S(—(a+p8) 1 —0 with ¢:1—2%°

is exact, so we have [ = S(—(« + f3)) as an S-module. Therefore,

Sla+p), i=0

Exti(1,S) = Extg(S(—(a + f)), 5) = {0 1 # 0.

Then the exact complex 0 — [ — S — S/I — 0 gives the long exact sequence

0 — Ext3(S/I,S) — Ext%(S,S) — Ext%(I, 9)
— Bxts(S/1,S) — Bxts(S,S) — Extg(1,S)
— Bxt%(S/1,S) — BExt%(S,S) — Ext3(l,S) — 0.

This long exact sequence simplifies to
0 — Ext%(S/I,5) % S -5 S(a + B8) — ExtL(S/1,S) — 0 — 0 —» Ext3(S/I,S) — 0.

Then Ext(S/I,S) = Homg(S/I,S) = 0 since I # 0, and exactness of this sequence implies
that Ext3(S/I,S) = 0. Therefore, this sequence further reduces to

0% S - S(a+ B) % Exth(S/I,S) — 0.
Exactness implies that ¢ is surjective and gives

Exty(S/1,5) = S(a+ )/ ker¢ = S(a+ B)/imp = S(a + B)/1.
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Thus,
Sla+p8)/1, i=1
0, i1,

Then S(a+ )/ is generated as a k-vector space by the monomials in S(a + ) not in 1.
This gives

Ext%(S/I,S) :{

S(a+p)/1 =@ k(a+p)r' + @ kla+ B)a'y + -+ EP k(a+ B)a'y*

i Pra+ B)ylji B k(o + Bay’ +- 0+ B k(e + Bty
= @;Ej+ﬁ—z‘>+6§;€ia+6— (z‘+1>>+-~-Jf@k(a+/3— (i+5-1)
i>0 i>0 i>1
+@k(a+ﬁ—j)+@k(a+ﬁ—(j+1))+---+@k(a+ﬁ—(j+a—1)).
Here we’ve used thz;t in k(o + B) we ;ave deg(1) = —(a + f), Whi:;h gives deg(z'y’) =

—(a+ B) +i+j. Thus, k(a + B)z'y’ is generated in degree o + 3 — i — j. Observe that
each term in the resulting expression for S(a+ )/ is a copy of k generated in some degree
e =s+t— (a+ ) which is equal to the value assigned to a unit square in S/I. This gives
a one to one correspondence between copies of k in Extg(S/I,S) and unit squares in S/I.
Since the values of these squares are ey, es,... we have

k(—e1) @ k(—e) @ -+, i=1

Exts(S/1,S) = {07 P41

which completes the proof of the base case. Now suppose the proposition holds for monomial
ideals I that are not artinian and have n — 1 unit squares in (z®y”)/I.

For the inductive step, let I be a monomial ideal that is not artinian that has n unit squares
in (z%y?)/I with values given by dy,...,d,. Recall that d; = —(s; +t;) is the value given
to the unit square with upper-right corner (s;,t¢;). Without loss of generality, suppose
$n + t, = max{s; +t;}. Consider the ideal J containing I and the unit square with value
d,. Then J satisfies the inductive assumption. The short exact sequence

0—S/J—S/I—J/I]—0
gives the long exact sequence in cohomology (Theorem 5)

0 — Ext%(J/1,S) — Ext2(S/I,S) — Ext2(S/J,S)
— Bxtg(J/1,8) — Extg(S/I,S) — Extg(S/J,S)
— Extg(J/I,8) — Extz(S/I,S) — Ext3(S/J,S) — 0.

Then J/I contains only the unit square with value d,, = —(s, + t,). Since this square has
lower-left corner (s, —1,t, — 1), we have that J/I = kz*"~!y»~! as a k-vector space. To find
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what J/I is as an S-modules, consider the homorphism ¢ : S(—(s, +t,)+2) — ka*»~lytn~1
given by ¢ : 1+ x*» 1y~ This map is surjective and has ker ¢ = (z,y) = m, so we have
that J/I = S(d,, +2)/m as an S-module. Therefore,

Bxty(J/1, 5) = Exty(S(d, +2)/m, §) = {

By the inductive assumption, we also have

Ext}(S/J,S) = k(—e1) @ k(—eq) @ -, i=1
0, i#1,2.

Thus, the long exact sequence becomes
0 — 0 — Ext2(S/I,S) — 0 — 0 — BExts(S/I,8) — k(—ey) + k(—eg) + -
5 k(—dy) — Ext$(S/1,8) — k(—dy) + k(—dy) + - - - + k(—dp_y) — 0.
This implies that Ext%(S/I,.S) = 0 and ¢ is the zero map because
—dp, =8, + 1, > a+ 3> —e; for all jeN.
Then ker ¢ = k(—e;1) + k(—e2) + - -+ and so exactness gives
Extg(S/1,9) = k(—e1) ® k(—eq) @ - - -

and
Ext3(S/I,S) = k(—dy) ® k(—dy) ® -+ ® k(—dp_1) ® k(—d,)

as desired. O

If I is artinian, then Proposition 27 still holds and in fact reduces to Proposition 25.

Therefore, Proposition 27 allows us to compute Ext%(S/I,S) for all monomial ideals in
S = k[z,y].

5.2 In the Multivariate Polynomial Ring

Let S = k[z1,...,z,) and let I be any artinian monomial ideal of S. Then the argument
used in Proposition 25 can be generalized to this case. Let a minimal set of generators for 1
be given by

_ p1 ,.D2 _ 2951 a;,
I= (V25 2l my, ... m,) for some Pl Py >0, mj =2, - apim €8S,

Y n

Suppose that I # S. Then each p; > 1, and we can “visualize” the ideal [ as a multi-
dimensional staircase in R™ by plotting the exponent vectors of the minimal generators.
Then S/I contains finitely many n-dimensional unit cubes, since [ is artinian. To each of
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these n-cubes we assign a value in the following way.

Let (ai,...,ay) be the point of the n-cube in S/I with maximal distance from
the origin. Then the value of that n-cube is — (o + - + ).

Proposition 28. Let I be an artinian monomial ideal in S = k[z1,...,x,], and write
I= (" 22 ... aPr mq,...,m,) as above. Denote the values of each of the unit n-cubes in

Y n

S/1 by dy,...,d;. Then we have

k(—dl) ©® k(—dz) b k’(—d@), 1=mn

Exty(S/1,5) = {O, i,

Therefore, each unit n-cube in S/I corresponds to a copy of k generated in degree d; in
Ext$(S/1,9).

This proposition can be proved in precisely the same manner as Proposition 25 using in-
duction on the number ¢ of unit n-cubes in S/I. Therefore, we now know how to compute
Ext%(S/I,S) for all artinian monomial ideals in any finite number of variables. In particular,
we can compute reg(l). In the case that I is an artinian monomial ideal generated in degree
n, computing the regularity of I determines whether I has a linear resolution.

References

[1] D. Dummit and R. Foote, Abstract Algebra. Wiley, 2004.

[2] D. Eisenbud, The Geometry of Syzygies: A Second Course in Algebraic Geometry and
Commutative Algebra. Graduate Texts in Mathematics, Springer, 2005.

[3] E. Miller and B. Sturmfels, Combinatorial Commutative Algebra. Graduate Texts in
Mathematics, Springer New York, 2004.

[4] 1. Peeva, Graded Syzygies. Algebra and Applications, Springer London, 2010.

[5] J. Herzog and T. Hibi, Monomial Ideals. Graduate Texts in Mathematics, Springer
London, 2010.

33



