
Understanding Quantum Mechanical Systems with
Spherical Symmetry via Representations of Lie

Groups

Gregory Greif
Senior Glynn Family Honors Thesis

University of Notre Dame

Adviser: Brian C. Hall
Professor, Department of Mathematics

3 April 2018



Contents

1 Angular Momentum and the Schrodinger Equation 2
1.1 The Schrödinger Equation . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Lie Theory 6
2.1 Lie Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Lie Algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 SU(2) and SO(3) 14
3.1 Definitions and Properties . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 2-1 Homomorphism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Classifying Irreducible Representations 24
4.1 The Irreducible Representations of so(3) . . . . . . . . . . . . . . . . 25
4.2 The Irreducible Representations of SU(2) . . . . . . . . . . . . . . . . 30
4.3 The Irreducible Representations of SO(3) . . . . . . . . . . . . . . . . 32

5 Solutions to the Schrödinger Equation 34
5.1 Realizing the Solutions in L2(R3) . . . . . . . . . . . . . . . . . . . . 34
5.2 Spin and Projective Representations . . . . . . . . . . . . . . . . . . 40

6 Conclusion 41

Introduction

“I think I can safely say that nobody understands quantum mechanics.”
—Richard Feynman (1965)

It is a sorry state of affairs in which one of a field’s most brilliant thinkers claims
that field is impossible to understand. Granted, Richard Feynman was not saying
that the mathematics describing quantum physics was unknown—he certainly was
as familiar with it as anyone—but that the physics itself is deeply counterintuitive
and demands a shift in perception in order to internalize it. Still, this sentiment that
quantum mechanics is ‘too difficult’ to understand persists because undergraduate
physics students usually do not possess the necessary mathematical background for
a complete understanding of quantum phenomena. Such a difficulty is unavoidable,
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as professors cannot be expected to go on lengthy digressions into Lie theory, but it
is lamentable nonetheless.

My goal in this paper is to ease the confusion, at least partially, by providing
a rigorous mathematical explanation of angular momentum and spin accessible to
an undergraduate physics or mathematics major. We will introduce representation
theory as it relates to Lie groups and Lie algebras. Then we will focus on the two Lie
groups SU(2) (the special unitary group of order two) and SO(3) (the special orthog-
onal group of order three), which are of great importance in the theory of angular
momentum. Finally we will relate these groups to angular momentum by reproduc-
ing the calculations that appear in introductory quantum mechanics textbooks in a
more thorough manner.

We will not assume any familiarity with Lie theory, although a basic understand-
ing of concepts in quantum mechanics such as probability amplitudes, spin, etc. is
important. Familiarity with linear algebra and basic group theory is assumed. Sec-
tion 1 provides a short explanation of the relevant physics and explains our goal:
to describe the solutions of a quantum mechanical system with spherical symmetry.
Section 2 provides the necessary background in Lie theory, and Section 3 applies
these results to the groups SU(2) and SO(3). Section 4 discusses the irreducible
representations of SU(2), SO(3), and their Lie algebras, while Section 5 applies these
results to spin and angular momentum.

1 Angular Momentum and the Schrodinger Equa-

tion

1.1 The Schrödinger Equation

The goal of our analysis is to find solutions ψ : R3 → C to the time-independent
Schrödinger equation (TISE):

− ~2

2m
∇2ψ(x) + V (x)ψ(x) = Eψ(x) (1)

where ~ and m are constants, V : R3 → R is the potential energy function, and
E is the system’s energy. Any student of quantum mechanics knows the solution
ψ(x) as the wavefunction of the system and that the square modulus of ψ(x) gives
a probability density function for the location of the particle ψ(x) describes. Thus
solutions to equation (1) are elements of L2(R3,C), the space of square-integrable
complex-valued functions on R3. However, we will not dwell on this point, but
instead emphasize the fact that the codomain is C.
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The left-hand side of equation (1) is often considered as an operator Ĥ (the
Hamiltonian) acting on ψ(x), in which case the TISE becomes an eigenvalue equation
for Ĥ:

Ĥψ(x) = Eψ(x). (2)

The Hamiltonian is the ‘energy operator,’ and from this point of view our goal is
to find the eigenfunctions and eigenvalues of Ĥ. Ultimately, these eigenfunctions are
seen to be the states of the system with well-defined energies. Linear combinations of
the eigenfunctions are solutions to the Time-dependent Schrödinger equation
(TDSE), which describes the evolution of the system over time. However, a thorough
discussion of the TDSE is outside of the scope of this text, so we restrict our attention
to finding the eigenfunctions of the TISE.

We will focus on a particular case of the Schrödinger equation—namely when
V (x), and hence Ĥ, has rotational symmetry (the Laplacian, ∇2 is always rotation-
ally invariant). By rotational symmetry we mean that rotating one solution to the
system produces another solution. Many important physical systems, most notably
the hydrogen atom, have rotational symmetry, so an analysis of the rotationally in-
variant Schrödinger equation covers much ground in quantum mechanics. Moreover,
its analysis is made simpler by the property of angular momentum, which we now
introduce.

1.2 Angular Momentum

In classical mechanics, the angular momentum of a particle is defined as the cross
product of the particle’s displacement r (with respect to some reference frame) and
its momentum p:

L = r× p,

which is to say,

L1 = x2p3 − x3p2, L2 = x3p1 − x1p3, and L3 = x1p2 − x2p1.

We may extend this definition to quantum mechanics using the quantum mechanical
position and momentum operators:

x̂ = x, and p̂ = −i~∇,

which gives us

L1 = −i~
(
x2

∂

∂x3

− x3
∂

∂x2

)
; L2 = −i~

(
x3

∂

∂x1

− x1
∂

∂x3

)
;

L3 = −i~
(
x1

∂

∂x2

− x2
∂

∂x1

)
. (3)
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Note that because different components of x̂ and p̂ commute, these operators are
well defined.

The angular momentum operators may be thought of as infinitesimal rotations (or
generators of rotations) in the following manner. If we change to spherical coordinates
with θ = 0 pointing along the x3-axis, then we may write

L3 = −i~ d

dφ
ψ(Rφx)

∣∣∣∣
φ=0

,

where Rφ is a counterclockwise rotation by angle φ in the (x1,x2) plane. L1 and
L2 may similarly be expressed via rotations about their respective coordinate axes.
Later, after we discuss Lie group and Lie algebra representations, we will find that the
angular momentum operators define the representation of the Lie algebra associated
to the natural representation of the Lie group SO(3) on the space of three-dimensional
wavefunctions.

To elaborate on this connection between angular momentum and rotations, we
introduce the bracket (or commutator) defined as [X,Y ] = XY − Y X for quantum
mechanical operators X and Y . We note two important facts about the commutator.

Proposition 1.1. The three angular momentum operators obey the following com-
mutation relations:

[L1,L2] = i~L3; [L2,L3] = i~L1; [L3,L1] = i~L2. (4)

These are precisely the commutation relations of the Lie algebra so(3) associated to
the Lie group SO(3) (see Section 3)

Proof. We use the canonical commutation relation [xi, pi] = i~ (for i = 1, 2, 3). For
L1 and L2, we have

[L1,L2] = [x2p3 − x3p2,x3p1 − x1p3]

= x2[p3,x3]p1 + [x3, p3]p2x1

= i~(x1p2 − x2p1) = i~L3.

The other two commutation relations can be obtained in a similar manner. Note it
is also possible to derive this result by multiplying out the differential expressions for
L1 and L2 and then cancelling like terms (which works because second order partial
derivatives do not depend on the order of differentiation).

A second point about the commutator is of fundamental importance. If the
commutator of two operators is zero (i.e., if they commute), then the operators have
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a complete set of mutual eigenfunctions, meaning that all solutions to the system are
linear combinations of the mutual eigenfunctions. This we will not prove (though it
is not difficult to show), but the following corollary is important to our discussion.

Proposition 1.2. In a rotationally invariant quantum mechanical system, the in-
variant subspaces of the Hamiltonian Ĥ are also invariant subspaces of the angular
momentum operators L1, L2, and L3.

Proof. In general we have that any rotation of a solution ψ(x) will give another
solution to the time-independent Schrödinger equation. In particular this is true for
any rotation around the x3-axis. Consider an infinitesimal rotation by angle dθ:

x′1 = x1 + dθx2,

x′2 = x2 − dθx1,

x′3 = x3.

Plugging these new values into ψ(x) gives a new solution to the TISE:

Ĥψ(x1 + dθx2,x2 − dθx1,x3) = Eψ(x1 + dθx2,x2 − dθx1,x3). (5)

Expanding equation (5) as a Taylor series, we find

Ĥψ(x1,x2,x3) + Ĥdθ

(
∂ψ

∂x1

x2 −
∂ψ

∂x2

x1

)
= Eψ(x1,x2,x3) + Edθ

(
∂ψ

∂x1

x2 −
∂ψ

∂x2

x1

)
which gives, when we subtract off equation (2),

Ĥ

(
∂

∂x1

x2 −
∂

∂x2

x1

)
ψ =

(
∂

∂x1

x2 −
∂

∂x2

x1

)
Ĥψ.

Multiplying both sides of the equation by −i~ we see that [Ĥ,L3] = 0 as desired.
The same argument using rotations around the x1 and x2-axes shows that L1 and
L2 commute with Ĥ as well.

Because Ĥ and L3 commute, they share eigenfunctions, and thus we can solve
equation (2) by finding the eigenfunctions and eigenvalues of L3. In other words, we
are able to find solutions to the rotationally invariant Schrödinger equation simply by
performing an analysis of angular momentum. The next two sections are devoted to
the theory of Lie groups, which will provide the necessary mathematical background
to discuss angular momentum in detail.
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2 Lie Theory

Lie groups are in some sense the natural mathematical structure to use when studying
systems with continuous symmetry (e.g., rotational symmetry) because the operation
under which the system is invariant can then be viewed as an action of a Lie group on
the space. For our discussion, the relevant Lie groups are the special orthogonal group
of order three, SO(3), and the special unitary group of order two, SU(2). SO(3) can
be viewed as the group of rotations of three-dimensional real Euclidean space, while
SU(2) can be viewed as the group of rotations of two-dimensional complex Euclidean
space. The two groups are related to each other by a 2-1 and onto homomorphism
from SU(2) to SO(3) (in topological jargon, SU(2) is the universal cover of SO(3)).

We begin by introducing the necessary mathematical background to discuss these
two groups. In particular we would like to discuss how these two groups relate to each
other, their properties as Lie groups (smooth groups with smooth group operations),
and representations of the groups and their Lie algebras. In this discussion we
omit extraneous details and proofs, instead focusing solely on the theory relevant to
angular momentum. By the end of this section we will have introduced matrix Lie
groups, Lie algebras, the matrix exponential, representations, and various important
properties of these objects. For those interested in seeing the theory of Lie groups
and Lie algebras laid out in detail, many of the proofs of our results can be found in
[1]. In the next section we will make this discussion concrete by applying our results
to SU(2) and SO(3).

2.1 Lie Groups

In general, a Lie group is a smooth manifold with smooth group operations, but here
we focus on a subclass of Lie groups which we call matrix Lie groups—essentially
Lie groups that can be represented as a set of matrices. Formally these groups are
closed subgroups of the group of invertible matrices over C.

Definition 2.1. The general linear group over the complex numbers, denoted
GL(n;C), is the group of all n× n invertible matrices with complex entries.

Definition 2.2. For any X ∈Mn(C) , we define the Hilbert-Schmidt norm of X
to be the quantity

||X|| =

(
n∑

j,k=1

|Xjk|2
)1/2

,

which may be computed in a basis independent way as ||X|| = (trace(X∗X))1/2.
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Definition 2.3. A matrix Lie group is a closed subgroup G of GL(n;C), i.e., if
Am is any sequence of matrices in G and Am converges to some matrix A (in the
Hilbert-Schmidt norm), then either A is in G or A is not invertible.

In any discussion of groups there must be some notion of a group homomorphism.
For Lie groups, homomorphisms are defined in the usual way with continuity as an
added condition.

Definition 2.4. Let G and H be matrix Lie groups. A map Φ : G → H is called
a Lie group homomorphism if (1) Φ(X1X2) = Φ(X1)Φ(X2) for all X1,X2 ∈ G
(i.e., Φ is a group homomorphism) and (2) Φ is continuous. If, in addition, Φ is
one-to-one and onto and the inverse map Φ−1 is continuous, then Φ is called a Lie
group isomorphism.

We will further make use of two topological properties—connectedness and simple
connectedness.

Definition 2.5. We say a matrix Lie group G is connected if for all A and B in
G, there exists a path A : [0, 1]→ G such that A(0) = A and A(1) = B.

This property is usually known as path connected, but matrix Lie groups are Lie
groups (i.e., n-dimensional smooth manifolds) and therefore locally path connected.
This means (by a standard result in topology) that for matrix Lie groups path
connectedness is equivalent to connectedness (in the ordinary topological sense) and
we are thus free to refer to them by the same name.

Even more important to our discussion is the notion of simple connectedness:

Definition 2.6. We say a matrix Lie group G is simply connected if it is connected
and every closed path A : [0, 1] → G is homotopically equivalent to a trivial path,
i.e., there exists a continuous function A(s, t) for 0 ≤ s, t ≤ 1 in G such that:

1. A(s, 0) = A(s, 1) for all s,
2. A(0, t) = A(t),
3. (A(1, t) = A(1, 0) for all t.

As we shall see, the group SO(3) is not simply connected, but its universal cover,
SU(2), is. The 2-1 homomorphism mentioned earlier has a kernel {I,−I} correspond-
ing to the fundamental group of SO(3). In fact SO(3) is isomorphic topologically
to RP3 (S3 with antipodal points identified) while SU(2) is isomorphic to S3. The
result is that there is a homotopically non-trivial path to the identity in SO(3), since
in SU(2) this path corresponds to a path from I to −I.
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2.2 Lie Algebras

Lie algebras, in the language of manifolds, are the tangent space at the identity to
their respective Lie group. However, as we have foregone this language in favor of
the language of matrices, we will give an alternate definition in terms of the matrix
exponential. We define the exponential by generalizing the power series definition
to matrices:

Definition 2.7. The exponential of an n× n matrix X, denoted eX or exp(X) is
defined by the power series

eX =
∞∑
m=0

Xm

m!

where X0 is defined to be the identiy matrix I and Xm is the repeated matrix product
of X with itself.

We list several useful properties of the matrix exponential.

Proposition 2.8. Let X and Y be arbitrary n × n matrices. Then we have the
following:

1. e0 = I.
2. (eX)∗ = eX

∗
.

3. eX is invertible and (eX)−1 = e−X .
4. e(α+β)X = eαXeβX for all α and β in C.
5. If XY = Y X, then eX+Y = eXeY = eY eX .
6. If C is in GL(N ;C), then eCXC

−1 = CeXC−1.

Proof. See Chapter 2 of [1]

Theorem 2.9. For any X ∈Mn(C), we have

det(eX) = etrace(X).

Proof. If X is diagonalizable with eigenvalues λ1, . . . ,λn, then eX is diagonalizable
with eigenvalues eλ1 , . . . , eλn . Therefore trace(X) =

∑
j λj and

det(eX) = eλ1 . . . eλn = eλ1+...+λn = etrace(X).

This argument can be extended to a non-diagonalizable matrix X by approximating
X with a sequence of diagonalizable matrices.
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Another important property of the exponential is the following:

Proposition 2.10. Let X be an n× n complex matrix. Then etX is a smooth curve
in Mn(C) and

d

dt
etX = XetX = etXX.

In particular,
d

dt
etX
∣∣∣∣
t=0

= X.

Proof. See Chapter 2 of [1]

Example 2.11. The matrix

X =

(
0 −a
a 0

)
has exponential

eX =

(
cos a − sin a
sin a cos a

)
Proof. Note that the exponential of a diagonal matrix D with entries λ1, . . . ,λn is
simply the diagonal matrix with entries eλ1 , . . . , eλn . The eigenvectors of X are (1, i)
and (i, 1) with eigenvalues −ia and ia respectively. Therefore diagonalizing X and
taking the exponential, we have

eX =

(
1 i
i 1

)(
e−ia 0

0 eia

)(
1/2 −i/2
−i/2 1/2

)
,

which simplifies to the claimed result.

Already we can see similarities to angular momentum. Here a matrix X is defined
as the derivative of an exponential, whereas in Section 1 we saw that the angular
momentum operators could be thought of as the derivative of a rotation.

This connection will become even clearer with the Lie algebra of a matrix Lie
group, which we now introduce. Although Lie algebras can be considered as abstract
objects in their own right (e.g., R3 equipped with the cross product is a Lie algebra),
we restrict our attention here to Lie algebras which are in some sense “matrix” Lie
algebras—Lie algebras that are generated by matrix Lie groups or associated very
closely with them.

Definition 2.12. Let G ∈Mn(C) be a matrix Lie group. We define the Lie algebra
of G, denoted g, to be the set of all matrices X ∈ Mn(C) such that etX is in G for
all real numbers t.
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Theorem 2.13. Let G be a matrix Lie group with Lie algebra g. If X and Y are
elements of g, then:

1. AXA−1 ∈ g for all A ∈ G.
2. sX ∈ g for all real numbers s.
3. X + Y ∈ g
4. XY − Y X ∈ g.

Proof. The first point follows simply from the properties of the matrix exponential:

et(AXA
−1) = AetXA−1 ∈ G

for all t. Furthermore for the second point, we simply note that et(sX) = e(ts)X is in
G for all t since X is in g. For the third point, we use the Lie product formula:

et(X+Y ) = lim
m→∞

(
etX/metY/m

)m
.

The limit is invertible (since eX is invertible for all X) and in G since G is a closed
subgroup of GL(n,C). This holds for all t, so X + Y ∈ g.

The fourth point follows from points 2 and 3, which show that g is a real subspace
of Mn(C) and therefore closed topologically, along with the following equality:

XY − Y X =
d

dt

(
etXY e−tX

)∣∣∣∣
t=0

= lim
h→0

ehXY e−hX − Y
h

where the first equality follows from a straightforward application of the product
rule. Together these imply that XY − Y X ∈ g since ehXY e−hX is in g by point
1.

For X and Y in g, we refer to [X,Y ] = XY − Y X ∈ g as the bracket or
commutator of X and Y . The gist of this theorem is that the Lie algebra is
in fact a vector space equipped with a “bracket” operation (just as the space of
linear operators in quantum mechanics has the commutator). Indeed this is how Lie
algebras are defined abstractly, along with three additional properties on the bracket.
We now prove these properties for the bracket we have defined.

Proposition 2.14. Let G be a matrix Lie group with Lie algebra g. Then the bracket
operation [·, ·] : g× g→ g satisfies the following properties:
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1. [·, ·] is bilinear,
2. [·, ·] is skew symmetric: [X,Y ] = −[Y ,X] for all X,Y ∈ g,
3. [·, ·] satisfies the Jacobi identity:

[X, [Y ,Z]] + [Y , [Z,X]] + [Z, [X,Y ]] = 0

for all X, Y , Z ∈ g.

Proof. The first two properties are obvious. We can verify the Jacobi identity by
direct calculation:

[X, [Y ,Z]] + [Y , [Z,X]] + [Z, [X,Y ]] =X(Y Z − ZY )− (Y Z − ZY )X + Y (ZX −XZ)

− (ZX −XZ)Y + Z(XY − Y X)− (Y X −XY )Z

=0

where the last equality follows by associativity of matrix multiplication.

In analogy with Lie groups, we can define a Lie algebra homomorphism as a linear
map that preserves the bracket operation between vector spaces.

Definition 2.15. Let g and h be Lie algebras. A linear map φ : g → h is called a
Lie algebra homomorphism if φ([X,Y ]) = [φ(X),φ(Y )] for all X,Y ∈ g. If, in
addition, φ is one-to-one and onto, then φ is called a Lie algebra isomorphism.

Lie algebra homomorphisms are associated Lie group homomorphisms by the
following theorem:

Theorem 2.16. Let G and H be matrix Lie groups with Lie algebras g and h respec-
tively. Suppose that Φ : G → H is a Lie group homomorphism. Then there exists a
unique linear map φ : g→ h such that

Φ(eX) = eφ(X) (6)

for all X ∈ g. In addition, φ satisfies the following properties:

1. φ(AXA−1) = Φ(A)φ(X)Φ(A)−1 for all X ∈ g, A ∈ G.
2. φ([X,Y ]) = [φ(X),φ(Y )] for all X,Y ∈ g (i.e. φ is a Lie algebra homomor-

phism)
3. φ(X) = d

dt
Φ(etX)

∣∣
t=0

for all X ∈ g.

Proof. The proof requires a discussion of one-parameter subgroups, but it is otherwise
similar to that of Theorem 2.13. See Chapter 3 of [1] for details.
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The most important takeaway of this theorem is that every Lie group homomor-
phism gives rise to a unique Lie algebra homomorphism associated with it. The
converse, that every homomorphism of a Lie algebra g corresponds to a homomor-
phism in the associated Lie group G, is only true if the group G is simply connected.
As we shall see, this has important implications in the case of SO(3).

Finally in this subsection, we give a result that will be used shortly to prove a
relationship between representations of Lie groups and Lie algebras.

Corollary 2.17. If G is a connected matrix Lie group, then every element A of G
may be written in the form

A = eX1eX2 . . . eXm

for some X1, X2, . . . , Xm in g.

Proof. See Chapter 2 of [?]

2.3 Representations

We now move on to discussing Lie group and Lie algebra representations. The
representations of SU(2), SO(3) and their Lie algebras play an important role in
describing angular momentum and spin.

Definition 2.18. LetG ∈Mn(C) be a matrix Lie group and V be a finite-dimensional
complex (real) vector space with dim(V ) ≥ 1. A finite-dimensional complex
(real) representation of G is a Lie group homomorphism

Π : G→ GL(V ).

If g is a real or complex Lie algebra, then a finite-dimensional complex (real)
representation of g is a Lie algebra homomorphism

π : g→ gl(V )

The following definition gives several relevant properties of representations and
the spaces they act on.

Definition 2.19. Let Π be a finite-dimensional real or complex representation of
a matrix Lie group G, acting on a space V . A subspace W of V is called invari-
ant if Π(A)w ∈ W for all w ∈ W and all A ∈ G. An invariant subspace W is
called nontrivial if W 6= 0 or V . A representation with no nontrivial invariant
subspaces is called irreducible. These terms are defined analogously for Lie algebra
representations.
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We will elaborate more on the concept of representations in our discussion of
SU(2) and SO(3). To finish the section we state the following important result:

Proposition 2.20. Let G be a connected matrix Lie group with Lie algebra g.

1. If Π : G→ GL(V ) is a representation of G and π : g→ gl(V ) is the associated
representation of g, then a subspace W of V is invariant under the action of G
if and only if it is invariant under the action of g. In particular, Π is irreducible
if and only if π is irreducible.

2. If Π1 and Π2 are representations of G and π1 and π2 are the associated Lie
algebra representations, then π1 and π2 are isomorphic if and only if Π1 and
Π2 are isomorphic.

Proof. For Point 1, suppose first that W ⊂ V is invariant under π(X) for all X ∈ g.
Now suppose A is an element of G. Since G is connected, Corollary 2.17 says that
A can be written as A = eX1 . . . eXm for some X1, . . . ,Xm ∈ g. Since W is invariant
under π(Xj) it will also be invariant under exp(π(Xj)) = I +π(Xj) +π(Xj)

2/2 + . . .
and, therefore, under

Π(A) = Π(eX1 . . . eXm) = Π(eX1) . . .Π(eXm)

= eπ(X1) . . . eπ(Xm).

Thus W is invariant under Π(A) for all A ∈ G.
Conversely, suppose that W is invariant under Π(A) for all A ∈ G. Then W is

invariant under Π(etX) for all X ∈ g and, hence, invariant under

π(X) =
d

dt
Π(etX)

∣∣∣∣
t=0

.

for all X ∈ g. This completes the proof of Point 1.
Now if Π1 and Π2 are two representations of G acting on vector spaces V1 and V2

respectively and Φ : V1 → V2 is an invertible linear map, then an argument similar to
the one above shows that Φ is an isomorphism of group representations if and only
if it is an isomorphism of Lie algebra representations.

This result ensures that our future discussion of SU(2) and SO(3) will be useful.
Rotations can be thought of as a Lie group representation, while angular momentum
is the associated Lie algebra representation. Without Proposition 2.20, we would
have no guarantee that the irreducible representations of a group are uniquely as-
sociated with irreducible representations of the Lie algebra, and thus any attempt
to relate angular momentum to rotations would run into the danger of not being
well-defined.
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3 SU(2) and SO(3)

3.1 Definitions and Properties

We now move on to our discussion of SU(2) and SO(3). We begin by defining the
group SU(n) and stating some important results for SU(2).

Definition 3.1. An n × n complex matrix A is said to be unitary if the column
vectors of A are orthonormal, that is, if

n∑
l=1

AljAkl = δjk, (7)

where δjk is the Kronecker delta, equal to 1 if j = k and equal to 0 otherwise. The
collection of n× n unitary matrices is a closed subgroup of GL(n;C), which we call
the unitary group of order n and denote by U(n). The subgroup of U(n) consisting
of unitary matrices with determinant one is called the special unitary group of
order n and denoted SU(n).

We will not include the proof that U(n) and SU(n) are matrix Lie groups, as it
is a relatively straightforward computation. The group SU(n) may be thought of as
‘rotations’ on Cn.

Two equivalent definitions of a unitary matrix A are (1) the adjoint matrix of A
is the inverse of A (i.e., A∗ = A−1) and (2) A preserves the standard inner product
〈·, ·〉 on Cn, defined by

〈x, y〉 =
∑
j

xjyj.

By ‘preserves’ we mean 〈Ax,Ay〉 = 〈x, y〉 for all x, y ∈ Cn. To see that these
definitions are equivalent to the one given above, first note that we may rewrite
equation (7) as

n∑
l=1

(A∗)jlAkl = δjk,

which says that A∗A = I. Thus A is unitary if and only if A∗ = A−1 (note that this
follows only in the finite-dimensional case). Meanwhile, standard properties of the
adjoint say that

〈x,Ay〉 = 〈A∗x, y〉
for all x, y ∈ Cn. Therefore if A is unitary,

〈Ax,Ay〉 = 〈A∗Ax, y〉 = 〈Ix, y〉 = 〈x, y〉,
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showing that A preserves the inner product. On the other hand, if A preserves the
inner product, then 〈A∗Ax, y〉 = 〈x, y〉 for all x, y. By letting y range over the
standard basis vectors, it is easy to see that this condition holds only if A∗A = I.

A further property of unitary matrices comes from the fact that detA∗ = detA
for any matrix A. Thus, if A is unitary, we have

det(A∗A) = | detA|2 = det I = 1.

So all unitary matrices have determinant with magnitude 1.
The group SU(2) is of special importance. We now describe its structure and give

the form of its Lie algebra.

Proposition 3.2. Elements of SU(2) can be uniquely expressed in the form

U =

(
α −β
β α

)
where α and β are elements of C satisfying |α|2 + |β|2 = 1.

Proof. Let U ∈ SU(2). Clearly the first column of U ,

v1 =

(
α
β

)
must take such a form, so we merely need to show that the second column is exactly
determined by the first. The second column must be orthogonal to the first and be
a unit vector. One such vector is

v2 =

(
−β
α

)
,

but v1 and v2 span C2, so every unit vector orthogonal to v1 must be of the form
eiθv2. Therefore any element of SU(2) takes the form

U =

(
α −eiθβ
β eiθα

)
.

However we have left out one property of U , namely that det(A) = 1. The above
matrix has determinant eiθ(|α|2 + |β|2) = eiθ, so we require that eiθ = 1. This implies

U =

(
α −β
β α

)
.

as desired.
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Corollary 3.3. SU(2) is simply connected.

Proof. Elements of SU(2) are completely defined by the α and β given in Proposition
3.2. Therefore we can think of SU(2) topologically as S3, which is simply connected.

Proposition 3.4. The Lie algebra of U(n), denoted u(n), consists of all n× n skew
self-adjoint complex matrices, i.e., matrices satisfying X∗ = −X. The Lie algebra of
SU(n), denoted su(n), consists of all n × n skew self-adjoint complex matrices such
that trace(X) = 0. In particular su(2), the Lie algebra of SU(2), consists of matrices
of the form

X =

(
ai −b+ ci

b+ ci −ai

)
for a, b, c elements of R.

Proof. A matrix U is unitary if and only if U∗ = U−1. Therefore for any matrix X,
etX ∈ U(n) if and only if

(etX)∗ = (etX)−1 = e−tX .

But (etX)∗ = etX
∗
, so in fact etX ∈ U(n) if and only if

etX
∗

= e−tX .

Clearly if X is skew self-adjoint then this condition holds and so X is in u(n).
Conversely, we know that if X is in the Lie algebra, then the condition holds and we
may write

X∗ =
d

dt
(etX

∗
)

∣∣∣∣
t=0

=
d

dt
(e−tX)

∣∣∣∣
t=0

= −X

proving the first part of the proposition.
Now if X has trace zero, then etX has determinant one for all t by , which implies

X ∈ su(n). On the other hand if etX has determinant one for all t, then

trace(X) =
d

dt
ettrace(X)

∣∣∣∣
t=0

= 0,

proving that su(n) consists of skew self-adjoint matrices with trace zero. In particu-
lar, this implies that elements of su(2) take the form

X =

(
ai −b+ ci

b+ ci −ai

)
for a, b, c elements of R.
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Next we define SO(n) and discuss properties of SO(3).

Definition 3.5. An n × n real matrix A is said to be orthogonal if the column
vectors of A are orthonormal

The collection of n × n orthogonal matrices is a closed subgroup of GL(n;C)
which we call the orthogonal group of order n and denote by O(n). The subgroup
of O(n) consisting of orthogonal matrices with determinant one is called the special
orthogonal group of order n and denoted SO(n).

SO(n) may be thought of as the space of rotations on Rn. We will not prove that
O(n) is a Lie group and leave it as an exercise for the reader. As with unitarity, we
have two equivalent definitions for orthogonality. They are (1) the transpose of A
equals its inverse (i.e., Atr = A−1) and (2) A preserves the inner product on Rn.

In analogy with U(n), we find that the determinant of an orthogonal matrix A
must have magnitude 1. But this time the determinant must also be real (since A is
real), so detA = ±1. This property is important for the following proposition.

Proposition 3.6. O(n) is not connected for all n.

Proof. The determinant is a continuous map from Mn(C) to C. In particular, its
restriction to real matrices is a continuous map into R, and so the image of any
connected subset of Mn(R) must be a connected set in R. But we have just argued
that the image of O(n) is {1,−1} which is not connected. Thus O(n) is not a
connected subset of Mn(R).

On the other hand, by definition the image of the determinant for SO(n) is {1}.
We will prove later that SO(3) is homeomorphic to 3-dimensional real projective
space, which is connected but not simply connected.

Proposition 3.7. Elements of SO(3) are rotations in R3, i.e., an element R of
SO(3) can be expressed in the form

R = R0

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

R−1
0

for θ ∈ [0, 2π) and R0 an element of SO(3).

Proof. We first show that R has an eigenvector v with eigenvalue 1. Note that
because R is an element of SO(3), it is also an element of SU(3), and so every (real
or complex) eigenvalue of R must have absolute value 1. This is because if there
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existed an eigenvector v ∈ C3 with eigenvalue λ such that |λ|2 6= 1, then we would
have

〈Rv,Rv〉 = 〈λv,λv〉 = |λ|2〈v, v〉 ≥ 〈v, v〉,
contradicting that R is an element of SU(3).

Furthermore R is a real matrix, so its eigenvalues come in conjugate pairs. R has
precisely three eigenvalues (because R is normal), so it must have at least one that
is real and two that are conjugates of each other. We denote the real eigenvalue by
λ and the conjugate eigenvalues by µ and µ (it is possible that µ and µ are also real,
in which case they are both 1 or −1).

Finally, because R ∈ SO(3) we require that det(R) = 1. But because each
eigenvalue has magnitude 1, det(R) = λµµ = λ|µ|2 = λ, so v is an eigenvector of R
with eigenvalue λ = 1 as desired.

Next we show that the orthogonal complement of v in R3 is an invariant subspace
of R, i.e., R maps the plane orthogonal to v into itself. Let w be an element of v⊥.
Then 〈v, w〉 = 0, so

〈v,Rw〉 = 〈R−1v, w〉 =
1

λ
〈v,w〉 = 0

showing that Rw is also in v⊥. Thus R leaves the span of v untouched while acting
on v⊥. In other words, R is similar to a matrix of the form1 0 0

0 a b
0 c d

 (8)

for a, b, c, d ∈ R. Moreover we can easily choose an oriented orthonormal basis
with first element v, so that the change of basis matrix R0 will be orthogonal with
determinant 1. To determine the values of a, b, c, and d, first note that the columns
in (8) must be orthonormal, so the middle column may be written 0

cos(θ)
sin(θ)


for some θ ∈ [0, 2π]. The third column can be expressed similarly, but must also be
orthogonal to the second column, which implies it is either 0

− sin(θ)
cos(θ)

 or

 0
sin(θ)
− cos(θ)

 .
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Only the first possibility results in a matrix with determinant 1, so we conclude that
R may be expressed

R = R0

1 0 0
0 cos(θ) − sin(θ)
0 sin(θ) cos(θ)

R−1
0

as desired.

Proposition 3.8. The Lie algebra of O(n) is equal to the Lie algebra of SO(n) and
consists of all n× n real matrices satisfying X tr = −X. We denote this Lie algebra
by so(n). In particular so(3), the Lie algebra of SO(3), consists of matrices of the
form

X =

 0 a b
−a 0 c
−b −c 0


for a, b, c elements of R.

Proof. We can apply the same argument as that used in the proof of Proposition 3.4
but restricted to the reals. In this case the adjoint becomes the transpose, and so
the condition on the Lie algebra o(n) becomes X tr = −X. However this condition
implies trace(X) = 0, so in fact every element of o(n) is also an element of so(n).

For the three-dimensional case, the condition X tr = −X implies that the diagonal
entries of X are zero and opposing terms are the minus of each other, so that X takes
the form

X =

 0 a b
−a 0 c
−b −c 0

 , a, b, c ∈ R

as desired.

Proposition 3.9. The Lie algebras of SU(2) and SO(3) are isomorphic.

Proof. The Lie algebra su(2) has a basis

E1 =
1

2

(
0 i
i 0

)
, E2 =

1

2

(
0 −1
1 0

)
, E3 =

1

2

(
i 0
0 −i

)
with commutation relations [E1,E2] = E3, [E2,E3] = E1, and [E3,E1] = E2. Simi-
larly the Lie algebra so(3) has a basis

F1 =

 0 0 1
0 0 0
−1 0 0

 , F2 =

0 −1 0
1 0 0
0 0 0

 , F3 =

0 0 0
0 0 −1
0 1 0

 ,
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with commutation relations [F1,F2] = F3, [F2,F3] = F1, and [F3,F1] = F2. By skew
symmetry, these relations completely determine the bracket operation on the bases
for su(2) and so(3), and therefore on the spaces themselves. Thus because the bases
satisfy the same commutation relations, the brackets on the two Lie algebras are the
same. Hence su(2) and so(3) are isomorphic as Lie algebras.

Physicists will recognize the basis for su(2) as the Pauli spin matrices multiplied
by a factor of i. Clearly spin and the Lie algebra su(2) are closely related, but the
precise connection requires a classification of the representations of su(2) to fully
understand. This calculation will be performed in Section 5.

3.2 2-1 Homomorphism

We now make the connection between SU(2) and SO(3) explicit by constructing a
2-1 homomorphism between the two. First we define a Lie group representation (and
its associated Lie algebra representation) which will be useful in the construction.

Definition 3.10. Let G be a matrix Lie group with Lie algebra g. Then for each
A ∈ G, we define the adjoint map of G as a linear map AdA : g→ g by the formula

AdA(X) = AXA−1. (9)

Proposition 3.11. The map Ad : G → GL(g) defined by A 7→ AdA is a represen-
tation of G acting on g. Furthermore, for each A ∈ G, AdA satisfies AdA([X,Y ]) =
[AdA(X), AdA(Y )] for all X,Y ∈ g.

Proof. AdA(X) is in g by Point 1 of Theorem 2.13. That AdA is a homomorphism and
AdA([X,Y ]) = [AdA(X), AdA(Y )] can both be seen immediately from the definition.

Proposition 3.12. Let ad : g → gl(g) be the representation of g associated to Ad
as defined in equation (9). Then for all X,Y ∈ g,

adX(Y ) = [X,Y ].

Proof. By Point 3 of Theorem 2.16, ad can be computed as

adX =
d

dt
AdetX

∣∣∣∣
t=0

,

which gives

adX(Y ) =
d

dt
etXY e−tX

∣∣∣∣
t=0

= [X,Y ]

as desired.
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The construction of the 2-1 and onto homomorphism of SU(2) into SO(3) is as
follows. Consider the adjoint map Φ = Ad for G = SU(2). Then as noted above,
g = su(2) is the collection of all complex 2× 2 matrices X satisfying X∗ = −X and
trace(X) = 0. i.e., matrices of the form

X = i

(
x1 x2 + ix3

x2 − ix3 −x1

)
,

for x1,x2,x3 ∈ R. We can thus identify g with R3 via the coordinates x1,x2, and x3,
and then the standard inner product on R3 (the dot product) may be written as

〈X1,X2〉 = −1

2
trace(X1X2).

That is to say,

−1

2
trace

(
i

(
x1 x2 + ix3

x2 − ix3 −x1

)
i

(
x′1 x′2 + ix′3

x′2 − ix′3 −x′1

))
= x1x

′
1 +x2x

′
2 +x3x

′
3

as may be easily verified by direct calculation.
Viewed in this way, we can think of ΦU = AdU as a linear map on R3 for each

U ∈ SU(2). The map is clearly well-defined by Theorem 2.13 part (1), and moreover

−1

2
trace(ΦU(X1)ΦU(X2)) = −1

2
trace((UX1U

−1)(UX2U
−1))

= −1

2
trace(UX1X2U

−1)

= −1

2
trace(X1X2)

(since the trace is invariant under conjugation), showing that ΦU preserves the inner
product −trace(X1X2)/2 on su(2) ∼= R3. Therefore Φ = Ad is actually a Lie group
homomorphism of SU(2) into the group of orthogonal linear transformations of R3,
i.e., into O(3). But SU(2) is connected and Φ is continuous (as it is a Lie group
homomorphism), so ΦU lies in the identity component of O(3). Because det I = 1,
every element of the identity component must have determinant 1 (otherwise it would
not be connected) and thus ΦU lies in SO(3). Therefore Φ is in fact a homomorphism
of SU(2) into SO(3).

For example, suppose U is the matrix

U =

(
eiθ/2 0

0 e−iθ/2

)
. (10)
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Then for X defined as above,

Ui

(
x1 x2 + ix3

x2 − ix3 −x1

)
U−1 = i

(
x′1 x′2 + ix′3

x′2 − ix′3 −x′1

)
, (11)

where x′1 = x1 and

x′2 + ix′3 = eiθ(x2 + ix3)

= (x2 cos θ − x3 sin θ) + i(x2 sin θ + x3 cos θ). (12)

So Φ = AdU is a rotation by angle θ in the (x2,x3)−plane. Surprisingly, the rotation
is by θ and not by θ/2. This observation will come into play later when we discuss
spin angular momentum (it is behind the unusual behavior of spin-1/2 particles).

Proposition 3.13. The map U 7→ ΦU is a 2-1 and onto homomorphism of SU(2)
to SO(3) with kernel equal to {I,−I}.

Proof. We first show that the kernel of Φ is {I,−I}, and hence that Φ is 2-1. Both I
and −I are clearly elements of the kernel, as they commute through the conjugation.
To see that these are the only elements in ker(Φ), let U be an element of ker(Φ),
which we may express as

U =

(
α −β
β α

)
by Proposition 3.2. Then ΦU(X) = UXU−1 = X for all X ∈ su(2), which im-
plies that U commutes with every element of su(2). Note that this implies U also
commutes with scalar multiples of su(2), and in particular matrices of the form

−iX =

(
x1 x2 + ix3

x2 − ix3 −x1

)
,

which can be obtained by multiplying elements of su(2) by −i. Thus if

X = i

(
x1 x2 + ix3

x2 − ix3 −x1

)
, Y = i

(
y1 y2 + iy3

y2 − ix3 −x1

)
are arbitrary elements of su(2), then U commutes with(

a b
c −a

)
= X + iY , (13)
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where a, b, and c are arbitrary complex numbers. Furthermore, U commutes with
scalar multiples of the identity kI for k ∈ C, and adding this to equation (13) gives
matrices of the form (

a b
c d

)
a, b, c, d ∈ C.

In other words, U commutes with every element of M2(C). But this implies U must
be either I or −I, for if it commutes with every matrix then it commutes as follows:(

α −β
β α

)(
1 0
0 0

)
=

(
1 0
0 0

)(
α −β
β α

)
,(

α −β
β α

)(
0 1
0 0

)
=

(
0 1
0 0

)(
α −β
β α

)
.

The first equation implies that α = α and the second implies that β = −β = 0.
Together these give us that α = ±1 (since |α|2 + |β|2 = 1). This completes the proof
that ker(Φ) = {I,−I}.

To show that Φ maps onto SO(3), let R be an element of SO(3). We want to show
that R can be expressed as Φ(U) = AdU for some U ∈ SU(2). But by Proposition
3.7, we can express R as a rotation by angle θ around an “axis” X ∈ g ∼= R3. Because
X is an element of g = su(2), it is skew self-adjoint, and therefore by the Spectral
Theorem we may write

X = iU0

(
x1 0
0 −x1

)
U−1

0 ,

where U0 is a 2×2 unitary matrix. Then the plane orthogonal to X in g is the space
of matrices of the form

X ′ = iU0

(
0 x2 + ix3

x2 − ix3 0

)
U−1

0 . (14)

Now if we let

U = U0

(
eiθ/2 0

0 e−iθ/2

)
U−1

0 ,

then it is easy to see that UXU−1. On the other hand, the calculations given in
equations (11) and (12) show that UX ′U−1 is of the same form as in equation (14),
but with (x2,x3) rotated by angle θ. Therefore ΦU is a rotation by angle θ in the
plane perpendicular to X, showing that ΦU coincides with R. In other words, Φ
maps onto every element of SO(3).
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Because SU(2) is homeomorphic to S3, Proposition 3.13 implies that SO(3) is
homeomorphic to S3 with antipodal points identified, which is the space commonly
known as RP3, or 3-dimensional real projective space. RP3 is connected but not
simply connected, so we have the following corollary:

Corollary 3.14. SO(3) is connected but not simply connected.

We have already shown that the Lie algebras su(2) and so(3) are isomorphic.
Given that Proposition 3.13 proves that SU(2) and SO(3) are not isomorphic, we
can surmise that something fishy is going on.

The perspective of manifolds offers an explanation for the discrepancy. The Lie
algebra of a Lie group is the tangent space at the identity, so it captures the local
behavior of the group. Thus it makes sense that su(2) and so(3) should be isomorphic,
because the Lie groups are at least ‘locally’ isomorphic (as the 2-1 homomorphism
shows). But in converting from Lie group to Lie algebra, some information is lost,
and this is enough to let the 2-1 homomorphism descend to an isomorphism of
the Lie algebras. The information loss is of further importance when classifying
representations of the Lie groups and Lie algebras. This is the topic of the next
section.

4 Classifying Irreducible Representations

Thus far we have only seen hints of how angular momentum relates to the groups
SU(2) and SO(3), and to their Lie algebra su(2) ∼= so(3). The connection will become
more clear in this section, though the final fruits of our labor will have to wait for
Section 5. But to give a preview: the angular momentum operators L1, L2, and L3

form a representation of so(3) on the space of three-dimensional wavefunctions, i.e.,
on L2(R3). This representation is associated to a representation Π of SO(3), which
is the natural action of the rotation group on the space of wavefunctions:

(Π(R)ψ)(x) = ψ(R−1x)

for R an element of SO(3). It turns out that these representations are “completely
reducible” to irreducible representations of so(3) and SO(3) which act on finite dimen-
sional vector spaces of L2(R3). Thus by classifying the irreducible representations,
we are able to fully describe the invariant subspaces of the angular momentum oper-
ators, and therefore able to fully describe the solutions of the rotationally invariant
Schrödinger equation.
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4.1 The Irreducible Representations of so(3)

We begin with the irreducible representations of so(3). The analysis we now perform
should be instantly recognizable to any student of quantum mechanics as the com-
putation of the eigenvalues of the angular momentum operators (cf. [3] pp. 145-49
and [4] pp. 168-171).

Theorem 4.1. For each l = 0, 1
2
, 1, 3

2
, . . . there exists an irreducible representation of

so(3) of dimension 2l+ 1. Furthermore, any two irreducible representations of so(3)
with the same dimension are isomorphic.

Note that because 2l+1 ranges over all positive integers, l completely determines
the irreducible representations of so(3) ∼= su(2). For each l there is exactly one irre-
ducible representation (of dimension 2l + 1), and for each irreducible representation
there is a corresponding l.

Proof. Let π be an irreducible representation of so(3) acting on a finite-dimensional
vector space V . We begin by defining operators L1, L2, and L3 on V by

L1 = iπ(F1), L2 = iπ(F2), and L3 = iπ(F3) (15)

where F1, F2, and F3 are the basis elements for so(3) defined in the proof of Propo-
sition 3.9. Because π is a Lie algebra homomorphism, the Lj’s satisfy the same
commutation relations as the Fj’s, so we have

[L1,L2] = iL3; [L2,L3] = iL1; [L3,L1] = iL2;

which we see are precisely the same commutation relations as those found for the
angular momentum operators in equation (4) without a factor of ~. Thus we can
think of L1, L2, and L3 as the dimensionless angular momentum operators.

Next we define two new operators L+ and L− as linear combinations of L1 and
L2:

L+ = iπ(F1)− π(F2) = L1 + iL2

L− = iπ(F1) + π(F2) = L1 − iL2

Then it is easy to check that L+, L−, and L3 satisfy the commutation relations

[L3,L+] = L+

[L3,L−] = −L−
[L+,L−] = 2L3. (16)

We have the following lemma relating the eigenvectors of these three operators:
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Lemma 4.2. Let u be an eigenvector of L3 with eigenvalue α ∈ C. Then we have

L3L+u = (α + 1)L+u.

Thus, either L+u = 0 or L+u is an eigenvector for L3 with eigenvalue α + 1. Simi-
larly,

L3L−u = (α− 1)L−u,

so that either L−u = 0 or L−u is an eigenvector for L3 with eigenvalue α− 1.

In quantum mechanics, L+ is known as the “raising operator” and L− is known
as the “lowering operator” for obvious reasons.

Proof of Lemma. We know that

[L3,L+] = [iπ(F3), iπ(F1)− π(F2)] = π([iF3, iF1 − F2]) = L+.

Thus we have,

L3L+u = L+L3u+ L+u

= L+(αu) + L+u

= (α + 1)L+u.

Replacing L+ with L− in the argument above gives the second half of the lemma.

We now return to the proof of the theorem. Since we are working over the
algebraically closed field C, the operator L3 must have at least one eigenvector u
with eigenvalue α. Applying Lemma 4.2 repeatedly, we find eigenvectors for L3 with
eigenvalues increasing by 1 at each step:

L3(L+)ku = (α + k)(L+)ku.

Since these eigenvectors have distinct eigenvalues, they are linearly independent.
Therefore at some point the series must terminate, because V is a finite-dimensional
vector space. Thus there is some N ≥ 0 such that

(L+)Nu 6= 0

but
(L+)N+1 = 0.
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We now define u0 := (L+)Nu and λ := α + 2N . Then u0 is a non-zero vector with

L+u0 = 0

L3u0 = λu0.

Forgetting about the original eigenvector u and eigenvalue α we define vectors

uk = (L−)ku0

for k ≥ 0, which by Lemma 4.2 are all eigenvectors of L3 with eigenvalues λ− k:

L3uk = (λ− k)uk.

Again this gives a series of linearly independent eigenvectors of L3, so again the series
must terminate, i.e., there is some integer M ≥ 0 such that

uk = (L−)ku0 6= 0

for all k ≤M , but
uM+1 = (L−)M+1u0 = 0.

We have now discovered a chain of eigenvectors for L3 defined by the two numbers
M and λ. We are able to relate these values to each other using the following lemma:

Lemma 4.3. For uk defined as in equation (4.1) and k ≥ 1, we have

L+uk = k[2λ− (k − 1)]uk−1 (17)

Proof of Lemma. We proceed by induction on k. The commutation relation given in
equation (16) implies L+L− = 2L3 +L−L+, so by the definition of the uk’s in terms
of u0,

L+u1 = L+L−u0 = (2L3 + L−L+)u0 = 2λu0 + L−0 = 2λu0,

which verifies equation (17) in the case k = 1. Now assume equation (17) holds for
some k ≥ 1. Again using equation (16) and writing uk+1 in terms of uk, we find,

L+uk+1 = L+L−uk

= (2L3 + L−L+)uk

= 2(λ− k)uk + k[2λ− (k − 1)]L−uk−1

= (k + 1)[2λ− ((k + 1)− 1)]uk,

which is equation (17) for k + 1. Therefore the formula holds for all k ≥ 1.
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Now because uM+1 = 0, we must have L+uM+1 = 0. Hence by (17),

0 = L+uM+1 = (M + 1)(2λ−M)uM .

But uM and M + 1 are both nonzero, so we must have that 2λ − M = 0, i.e.,
λ = M/2. We define l = λ = M/2, so that the largest eigenvalue of L3 is just the
value l. Therefore for every irreducible representation (π,V ) of so(3), there exists a
number l = 0, 1

2
, 1, 3

2
, . . . and nonzero vectors u0, . . . u2l such that

L3uk = (l − k)uk

L−uk =

{
uk+1 k ≤ 2l

0 k = 2l

L+uk =

{
k(2l − (k − 1))uk−1 k ≥ 0

0 k = 0
(18)

In quantum mechanics the value l is known as the spin of the representation
(π,V ) of so(3). As mentioned above, the vectors u0, . . . u2l are linearly independent.
Moreover, their span is an invariant subspace under the L3, L+, and L− operators,
hence under L1, L2 and L3, and hence under every action of so(3) on V (since every
action of so(3) is a complex linear combination of the Lj’s). But the span is not {0}
since it contains the nonzero vector u0, so because π is an irreducible representation,
u0, . . . u2l must span all of V .

This proves that every irreducible representation of so(3) is of the form (18) for
some l = 0, 1

2
, 1, 3

2
, . . ., which implies that any two irreducible representations with

the same dimension (equal to 2l + 1) must be isomorphic. It remains to show that
such a representation exists for every value of l.

To do this, we define a vector space V with basis u0,u1, . . . ,u2l, and then define
the action of so(3) via (18). This completely defines the action because any action
of so(3) can be constructed as a linear combination of L+, L−, and L3. To see that
(π,V ), defined in this way, is indeed a representation of so(3), we merely need to
show that L+, L−, and L3 satisfy the commutation relations given in (16).

To this end, consider the action of [L3,L+] on a basis element uk. If k = 0, then

[L3,L+]u0 = (L3L+ − L+L3)u0 = L30− lL+u0 = 0 = L+u0,
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and if 1 ≤ k ≤ 2l, then

[L3,L+]uk = (L3L+ − L+L3)uk

= k(2l − (k − 1))L3uk−1 − (l − k)L+uk

= k(2l − (k − 1)(l − (k − 1))uk−1 − (l − k)k(2l − (k − 1))uk−1

= k(2l − (k − 1))uk−1 = L+uk.

Therefore [L3,L+] = L3 on V as desired. The other two commutation relations are
similarly verified by direct calculation.

However we still must show that the representation defined via (18) is irreducible.
Suppose that W is a nontrivial invariant subspace of V . We must show that W = V .
Let w ∈ W be nonzero, and decompose it as a linear combination of the basis vectors:

w =
2l∑
k=0

akuk. (19)

Because w 6= 0, at least one of the ak’s is nonzero. Let k0 be the largest value of k
for which ak 6= 0 and consider

(L+)k0w.

Since each application of L+ decreases the index by 1, (L+)k0 will eliminate every
nonzero term in equation (19) except the ak0uk0 term, which after k0 applications of
L+ becomes a nonzero multiple of u0. Therefore (L+)k0w is a nonzero multiple of u0,
and since W is invariant, this means that u0 belongs to W . But then uk = (L−)ku0

also belongs to W , so letting k range from 0 to 2l we find that every basis element
is a member of W . Thus W = V as desired. This completes the proof of Theorem
4.1.

We started at the Lie algebra level because the calculations are more straightfor-
ward than at the Lie group level. Simply by finding a basis for V and showing that it
satisfies the relations given in (18), we have classified all irreducible representations.
But ultimately our goal is to return to Lie groups, because it is the representations
of SO(3) that will correspond to solutions of the rotationally invariant Schrödinger
equation.

Unfortunately this is not so easy. In our discussion of Lie algebras, we found
that for every Lie group homomorphism Φ there is a corresponding Lie algebra
homomorphism φ which relates to Φ as in equation (6). But we noted the converse—
that every Lie algebra homomorphism has an associated Lie group homomorphism—
is not true in general. In the next two subsections we investigate the consequences
of this fact for the groups SU(2) and SO(3).
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4.2 The Irreducible Representations of SU(2)

We begin with the associated irreducible representations of SU(2).

Theorem 4.4. Let πl : su(2)→ gl(Vl) be an irreducible representation of so(3) with
dimension dim(Vl) = 2l + 1. Then there exists a representation Πl of the Lie group
SU(2) such that Πl(e

X) = eπl(X) for all X in su(2).

This theorem is guaranteed to hold, since SU(2) is simply connected and every
Lie algebra homomorphism has an associated Lie group homomorphism for simply
connected Lie groups. However as we have already mentioned, this is a difficult
statement to prove, so instead we rely on the explicit construction of the Πl’s given
below.

A further point to note is that by Proposition 2.20, every irreducible representa-
tion of SU(2) corresponds to a unique irreducible representation of su(2). Therefore
since the irreducible representations of su(2) are completely determined by the value
l, the only irreducible representations of SU(2) are those described in the theorem.

Proof. We first construct a representation Πl of SU(2) on the space of homogeneous
polynomials of degree 2l in two complex variables, which we denote by Vl. By
Theorem 2.16, there is an associated representation πl of su(2), which is related to
Πl by the formula

Πl(e
X) = eπl(X), (20)

for X ∈ SU(2). We will show that πl is irreducible and hence is the unique 2l+ 1 di-
mensional irreducible representation described in Theorem 4.1. Then by Proposition
2.20, Πl is also irreducible, which completes the proof.

To begin, define for each U ∈ SU(2) a linear transformation Πl(U) on the space
Vl by the formula

[Πl(U)p](z) = p(U−1z), z ∈ C2. (21)

We show that Πl defined in this way is a representation of SU(2).
Elements of Vl have the form

p(z1, z2) = a0z
2l
1 + a1z

2l−1
1 z2 + a2z

2l−2
1 z2

2 + . . .+ a2lz
2l
2 (22)

with z1, z2 ∈ C and the aj’s arbitrary complex constants, from which we see that
dim(Vl) = 2l + 1. If p is as in equation (22), then writing out Πl explicitly gives

[Πl(U)p](z1, z2) =
2l∑
k=0

ak(U
−1
11 z1 + U−1

12 z2)2l−k(U−1
21 z1 + U−1

22 z2)k.
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Expanding out the right hand-side of this formula shows that Πl(U)p is again a
homogeneous polynomial of degree 2l, so Πl(U) actually maps Vl into Vl. This
verifies that Πl is well-defined.

To see that Πl is a representation, note that

Πl(U1)[Πl(U2)p](z) = [Πl(U2)p](U−1
1 z) = p(U−1

2 U−1
1 z)

= Πl(U1U2)p(z).

This calculation makes it clear that the inverse on the right-hand side of equation
(21) is necessary for Πl to be a representation, since it undoes the order reversal
which occurs when applying Πl(U1) and Πl(U2).

Using Proposition 2.10 and equation (20), the associated representation πl of
su(2) can be computed as

(πl(X)p)(z) =
d

dt
(etπl(X)p)(z)

∣∣∣∣
t=0

=
d

dt
(Πl(e

tX)p)(z)

∣∣∣∣
t=0

=
d

dt
p(e−tXz)

∣∣∣∣
t=0

.

Now, let z(t) = (z1(t), z2(t)) be the curve in C2 defined as z(t) = e−tXz. By the
chain rule,

πl(X)p =
∂p

∂z1

dz1

dt

∣∣∣∣
t=0

+
∂p

∂z2

dz2

dt

∣∣∣∣
t=0

.

But again by Proposition 2.10, dz/dt|t=0 = −Xz, so this equation becomes

πl(X)p = − ∂p

∂z1

(X11z1 +X12z2)− ∂p

∂z2

(X21z1 +X22z2).

Applying this formula to the basis elements E1, E2, and E3 of su(2) defined in
the proof of Proposition 3.9, we find

πl(E1) =
i

2

(
−z2

∂

∂z1

− z1
∂

∂z2

)
πl(E2) =

1

2

(
z2

∂

∂z1

− z1
∂

∂z2

)
πl(E3) =

i

2

(
−z1

∂

∂z1

+ z2
∂

∂z2

)
.
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We can now define L+, L−, and L3 in a manner analogous to the operators used in
the proof of Theorem 4.1. This gives operators

L3 =
1

2

(
z1

∂

∂z1

− z2
∂

∂z2

)
L+ = −iz1

∂

∂z2

L− = −iz2
∂

∂z1

.

which act on a basis element z2l−k
1 zk2 for Vl in the following manner:

L3(z2l−k
1 zk2 ) = (l − k)z2l−k

1 zk2

L+(z2l−k
1 zk2 ) = −ikz2l−k+1

1 zk−1
2 (23)

L−(z2l−k
1 zk2 ) = −i(2l − k)z2l−k−1

1 zk+1
2 . (24)

Therefore each z2l−k
1 zk2 is an eigenvector for L3 while L+ and L− have the effect of

shifting the exponent k of z2 up or down by one. We can show that πl is irreducible
using the same argument as in the proof of Theorem 4.1, and hence it must be the
unique 2l + 1 dimensional irreducible representation of su(2). By Proposition 2.20,
Πl is thus also irreducible and unique as desired.

While interesting, the result we have just proved may not be particularly enlight-
ening or surprising. The surprise comes in the next section, when we attempt to find
the irreducible representations of SO(3). Whereas here a representation of SU(2)
was found for every l, for SO(3) representations will only exist for integer values of
l. The representations we constructed in this subsection will be essential to proving
this fact.

4.3 The Irreducible Representations of SO(3)

The strange relationship between SU(2) and SO(3), which we saw with the 2-1 ho-
momorphism, now comes into play. It is the irreducible representations of SO(3)
that interest us in order to describe angular momentum, but because SO(3) is not
simply connected we cannot find a representation for every value of l.

Theorem 4.5. Let σl : so(3)→ gl(Vl) be an irreducible representation of so(3) with
dimension dimVl = 2l+1 (l is the spin of σl). If l is an integer (i.e., if the dimension
of V is odd), then there exists a representation Σl of the Lie group SO(3) such that
Σl(e

X) = eσl(X) for all X in so(3). If l is a half-integer (i.e., if the dimension of V
is even) then there is no such representation.
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Proof. Suppose first that l is a half-integer. Using Example 2.11, we find that

e2πF3 =

1 0 0
0 cos(2π) − sin(2π)
0 sin(2π) cos(2π)

 = I.

On the other hand by Theorem 4.1 the operator L3 = iσ(F3) defined in equation
(15) is diagonal in the basis {uj}, and its eigenvalues are half-integers. Therefore,

e2πσl(F3) = e2πiL3 = −I.

Thus, if a corresponding representation Σl of SO(3) existed, we would have

I = Σl(I) = Σl(e
2πF3) = e2πσl(F3) = −I,

which is a contradiction.
Suppose however that l is an integer. Because su(2) and so(3) are isomorphic, we

can consider σl to be the composition of the Lie algebra representation φ associated
to the 2-1 homomorphism and the representation πl of su(2) defined in the proof of
Theorem 4.4. In symbolic form, σl = πl ◦ φ−1.

The associated Lie group homomorphism would then be Σl = Πl ◦Φ−1, where Πl

is the representation of SU(2) defined in Theorem 4.4 and Φ is the 2-1 homomorphism
with kernel ker(Φ) = {I,−I} discussed in Section 3. However this representation
is not necessarily well-defined, since Φ is not an isomorphism and so ‘Φ−1’ actually
maps an element R of SO(3) to two elements of SU(2), U and −U .

SU(2) GL(Vl) su(2) gl(Vl)

SO(3) so(3)

Πl

Φ

πl

φ
Σl σl

When l is a half-integer, this problem leads to the contradiction we found above.
But if l is an integer, then πl(E3) is diagonal in the basis {z2l−k

1 zk2} with integer
eigenvalues, and therefore

Πl(−I) = Πl(e
2πE3) = eπl(2πE3) = I,

so in fact Πl(U) = Πl(−U) for all U ∈ SU(2). Therefore it makes sense to define Σl

as we have above, because in this case

Σl(R) = Πl(Φ
−1(R)) = Πl(U) = Πl(−U). (25)

It is easy to show that Σl is a homomorphism and is continuous, so it is the desired
representation of SO(3).
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This theorem should be deeply troubling. If the representations of SO(3) cor-
respond to solutions to the rotationally invariant Schrödinger equation (on finite-
dimensional subspaces of L2(R3)), then it appears that half of the possible solutions
are missing. The half-integer representations of so(3) could be dismissed as un-
physical, but as we shall see in the next section, they are essential to describing the
behavior of half-integer spin particles such as electrons. Fortunately a solution comes
via ‘projective’ representations, which we will also discuss briefly in Section 5.

5 Solutions to the Schrödinger Equation

In this section we finally return to the problem of identifying solutions to the rotation-
ally invariant Schrödinger equation. Equipped with a description of the irreducible
representations of so(3) and SO(3), we can now determine the invariant subspaces
of the angular momentum operators in L2(R3), from which we obtain the invariant
subspaces of the Hamiltonian as stated in Proposition 1.2.

5.1 Realizing the Solutions in L2(R3)

In subsection 4.1 we classified the irreducible representations of so(3) on an abstract
vector space V . We saw that the angular momentum operators can be thought
of as a representation of so(3) realized on a finite-dimensional invariant subspace
of L2(R3). Thus we begin by attempting to identify, for each l, such an invariant
subspace. We will find this subspace to be the space of spherical harmonics of degree
l, multiplied by a radial function which depends on l and the potential V . However
this subspace exists for only integer values of l, hinting back to the missing half-
integer representations from the last section.

Theorem 5.1. For each integer l ≥ 0, the unique irreducible representation of so(3)
may be realized as a 2l+1 dimensional space Vl with a basis of eigenfunctions of the L3

operator, which we call the space of spherical harmonics of degree l. These eigen-
functions are the angular part of solutions to the rotationally invariant Schrödinger
equation.

Proof. We start by returning to the angular momentum operators as defined in
Section 1.2. Equation (3) gives each Lj as a differential operator, and writing these
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in spherical coordinates we have

L1 = −i~
(
− sin(φ)

∂

∂θ
− cos(φ) cot(θ)

∂

∂φ

)
L2 = −i~

(
+ cos(φ)

∂

∂θ
− sin(φ) cot(θ)

∂

∂φ

)
L3 = −i~ ∂

∂φ
.

Note that these operators still obey the commutation relations from equation (4)
and therefore still constitute a representation of so(3). Thus we can rely on the
analysis in Section 4.1 in order to describe the space Vl. In particular, we are looking
for eigenfunctions fml of L3, which for any given l will be a basis for Vl. These
eigenfunctions are characterized by the values l and m as in equation (18) with
m = l − k. Explicitly, we have

L2fml = (L2
1 + L2

2 + L2
3)fml = ~2l(l + 1)fml ;

L3f
m
l = ~mfml (26)

where l = 0, 1/2, 1, 3/2, . . . and m = −l,−l+ 1, . . . , l− 1, l. It is simple to check that
the equation for L2 holds by noting L2 = L+L− + L2

3 − ~L3 and applying equation
(18).

The eigenfunctions for a single l are connected in a chain by the L+ and L−
operators (which is why their span is an irreducible representation of so(3). We will
thus need to write L+ and L− as differential operators in spherical coordinates:

L± = L1 ± iL2 = −i~
[
(− sinφ± i cosφ)

∂

∂θ
− (cosφ± i sinφ) cot θ

∂

∂φ

]
.

Using the identity cosφ± i sinφ = e±iφ, this gives

L± = ±~e±iφ
(
∂

∂θ
± i cot θ

∂

∂φ

)
.

We are now able to determine fml (θ,φ) (which for now we simply call f) using the
eigenvalue equations (26) and the partial derivative expressions for L3, L+, and L−.
First of all, f is an eigenfunction for L3 with eigenvalue ~m:

L3f = −i~∂f
∂φ

= ~mf ,
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so
f(θ,φ) = g(θ)eimφ, (27)

where g is a function on R3 that depends only on θ. Furthermore f is an eigenfunction
of L2 which we can express in terms of L+, L−, and L3 to get

L2 = (L+L− + L2
3 − ~L3)f

= ~eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
(−~e−iφ)

(
∂f

∂θ
− i cot θ

∂f

∂φ

)
− ~2∂

2f

∂φ2
− ~2

i

∂f

∂φ

= ~2l(l + 1)f .

But from equation (27), we have ∂f/∂θ = eimφdg/dθ and ∂f/∂φ = imeimφg. Thus

−eiφ
(
∂

∂θ
+ i cot θ

∂

∂φ

)
(ei(m−1)φ

(
dg

dθ
+mg cot θ

)
+m2geimφ −mgeimφ

= eimφ
[
− d

dθ

(
dg

dθ
+mg cot θ

)
+ (m− 1) cot θ

(
dg

dθ
+mg cot θ

)
+m(m− 1)g

]
= l(l + 1)geimφ.

Canceling eimφ and multiplying through by − sin2 θ, we obtain

sin2 θ
d2g

dθ2
+ sin θ cos θ

dg

dθ
−m2g = −l(l + 1) sin2 θg.

Or written more simply:

sin θ
d

dθ

(
sin θ

dg

dθ

)
+ [l(l + 1) sin2 θ −m2]g = 0.

This is a differential equation for g(θ) with solution

g(θ) = APm
l (cos θ),

where A is a constant and Pm
l is the associated Legendre function defined by

Pm
l (x) = (1− x2)|m|/2

(
d

dx

)|m|
Pl(x).

Here Pl(x) is the lth Legendre polynomial, which we can define by the Rodrigues
formula:

Pl(x) =
1

2ll!

(
d

dx

)l
(x2 − 1)l.

36



Eigenfunctions for the angular momentum operators will therefore take the form

fml (θ,φ) = AeimφPm
l (cos θ) (28)

for a constant A (which in general could depend on r). When normalized, this
function is called a spherical harmonic and denoted Y m

l . The spherical harmonics
may seem complicated, but for our purposes it is enough to know that they exist
and that the 2l+ 1 functions for any given l constitute an irreducible representation
of so(3).

But for what values of l and m does Y m
l exist? First of all, note that for in order

for Y m
l to be single-valued, we must have

eimφ = eim(φ+2π),

from which we see that m must be an integer. This requirement can be seen directly
in the equation for the Legendre function, where m must be an integer in order for
the mth derivative to make sense. Similarly from the Rodrigues formula we see that l
must be a non-negative integer. In other words, we obtain the integer representations
of so(3) but not the half-integer representations.

Finally, note that because the spherical harmonics are eigenfunctions of the an-
gular momentum operators, they are also eigenfunctions of the Hamiltonian and
therefore constitute solutions to the rotationally invariant Schrödinger equation.

The above analysis gives the angular dependence of the Schrödinger equation as
a representation of so(3), but in order to obtain a full solution we must describe the
radial dependence as well. Because we are dealing with rotationally invariant sys-
tems, we can separate the radial and angular parts of the wavefunction as described
below, which gives a differential equation in terms of r that we can then solve.

Theorem 5.2. Eigenfunctions of the Hamiltonian for the rotationally invariant
Schrödinger equation take the form

ψ(θ,φ, r) = Y (θ,φ)R(r) = Y (θ,φ)
u(r)

r

where Y is a spherical harmonic of degree l and R is a radial function which depends
on l. If we apply the Schrödinger equation to ψ, the angular and radial parts of the
equation factor apart and we find that u(r) = rR(r) satisfies the differential equation

− ~2

2m

d2u

dr2
+

[
V +

~2

2m

l(l + 1)

r2

]
u = Eu (29)
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We will not go so far as to solve this differential equation for u(r), since we would
need a specific potential V in order to do so.

Proof. The first part of the theorem we have already shown above by proving the
angular function is of the form in equation (28). To show that u(r) satisfies equation
(29), we need only show that

∇2ψ(θ,φ, r) =
1

r
Y (θ,φ)

[
d2u

dr2
− l(l + 1)

r2
u(r)

]
(30)

which gives the desired equation when plugged into the TISE.
We will make use of the following identity, which is easy to prove by expressing

the L2 operator in angular coordinates:

∇2 =
1

r2

∂

∂r

(
r2 ∂

∂r

)
− L2

~2r2
(31)

To begin, consider the case l = 0, in which case Y m
l is just a constant which we

take to be 1. Then in cartesian coordinates

∂

∂xj
R(r) =

dR

dr

d

dxj

√
x2

1 + x2
2 + x2

3

=
dR

dr

xj
r

and so

3∑
j=1

∂2

∂x2
j

R(r) =
3∑
j=1

[
d2R

dr2

x2
j

r2
+
df

dr

(
1

r
−
x2
j

r3

)]
=
d2R

dr2
+

2

r

df

dr
=

1

r

d2u

dr2
.

For the general case, the product rule for the Laplacian gives us

∇2ψ = (∇2Y )R(r) + 2∇Y · ∇R(r) + Y∇2R(r). (32)

There are three points to note. First, using equation (31) and the fact that Y is
an eigenfunction for L2 with eigenvalue ~2l(l + 1), we may rewrite the Laplacian of
Y as

∇2Y =
1

r2

∂

∂r

(
r2 ∂

∂r

)
Y − L2

~r2
Y = − l(l + 1)

r2
Y
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where the radial term drops out because Y has no r dependence. Second, we can
again use equation (31) to rewrite the Laplacian of R(r) as

∇2R(r) =

(
d2

dr2
+

2

r

d

dr

)
R(r)

where this time the L2 term drops out. Third, the cross term 2∇Y · ∇R(r) is zero,
because it is the dot product of a purely angular and a purely radial vector.

Substituting these changes into equation (32) and simplifying results in the equa-
tion

∇2ψ(θ,φ, r) = Y (θ,φ)

[
d2R

dr2
+

2

r

dR

dr
− l(l + 1)

r2
R(r)

]
.

From here it is a simple matter of changing variables from R to u to obtain the
desired expression (30).

To give a summary of this section, we began by finding the eigenfunctions of
the angular momentum operators and showing that these are the solutions to the
angular part of the rotationally invariant Schrödinger equation. Now because Ĥ
and Lj commute, these are also the solutions of Ĥ so in fact we have found the

eigenfunctions of Ĥ and thus completely classified all solutions to the TISE with
rotational symmetry.

However, we did not obtain every possible value of l. The half-integer values,
which appeared as representations of so(3) in Section 4, do not appear as solutions
to the TISE. To explain this, we must return to the result from Section 4.3. As we
have already mentioned, the angular momentum operators constitute an action of
so(3) which is associated to the natural action of SO(3)

(Π(R)ψ)(x) = ψ(R−1x).

Any invariant subspace of L1, L2, and L3 will, by Proposition 2.20, also be invariant
under this action and thus constitute a representation of SO(3). From this perspec-
tive, it is obvious that the half-integer representations (i.e., the even dimensional
invariant subspaces) since these would produce half-integer representations of SO(3)
which we have shown cannot exist.

It may seem that we are laboring over a trivial point. There are no even dimen-
sional invariant subspaces of the rotationally invariant Schrödinger equation, and
why not leave it at that? But the situation is not that simple. In the next section we
will discuss the quantum mechanical property of spin (or intrinsic angular momen-
tum), which for fermionic particles such as electrons requires an explanation via the
half-integer representations. Thus we must find some way to reintroduce them, which
we will do by changing the function space and defining projective representations.
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5.2 Spin and Projective Representations

So far we have been working with wavefunctions in the space L2(R3) = L2(R3,C),
but various experiments in physics (most notably the Stern-Gerlach experiment) have
shown that this space requires a modification to include what has been dubbed the
‘spin’ of a particle, which can be thought of as intrinsic angular momentum. Spin
comes in half-integer multiples of ~ and acts analogously to orbital angular momen-
tum. From a mathematical perspective, it is just a finite-dimensional representation
of so(3) like that discussed in Section 4 (hence giving the value l the title spin in the
proof of Theorem 4.1).

In order to account for spin, we modify the function space by taking a tensor
product with a finite-dimensional vector space Vl that carries an action of so(3) and
has spin l. Thus the new solution space is L2(R3)⊗Vl, and we hope to find an action
of the group SO(3) on this space. This is all well and good when l is an integer, as the
actions on L2(R3) and Vl will carry over to the tensor product. But for half-integer
spin particles (commonly known as fermions), the space Vl will not carry an ordinary
action of SO(3), so L2(R3) ⊗ Vl will not either. In order to solve this problem, we
introduce projective representations:

Definition 5.3. Let G ∈Mn(C) be a matrix Lie group and V be a finite-dimensional
vector space over C. A finite-dimensional projective representation of G is a Lie
group homomorphism Π of G into the quotient group GL(V )/{eiθI}, where {eiθI}
denotes the group of matrices of the form eiθ, θ ∈ R.

A projective representation is exactly the same as an ordinary Lie group repre-
sentation, except that the operators on the space V are now equivalence classes of
operators. Two operators are equivalent if they differ only by a complex constant
with magnitude 1, so in particular I and −I become the same operator, and so do
U and −U .

If we consider not ordinary, but projective representations of SO(3) on L2(R3)⊗Vl,
we find that the half-integer representations do appear. Looking back to Section 4.3,
we see that the contradiction derived in the proof of Theorem 4.5 is no longer a
concern, because in the projective representation I and −I are equivalent. Thus we
are free to define Σl(R) as in equation (25), and Σl defined in this way will be the
projective representation associated to σl.

Projective representations of SO(3) on the space L2(R3) ⊗ Vl are the conclusion
of our analysis, since by describing them we describe all eigenfunctions, and thus all
possible solutions, to the rotationally invariant Schrödinger equation for both integer
and half-integer spin. We conclude this section by considering the all important
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case of l = 1/2, which describes the angular momentum of electrons and plays an
important role in describing the hydrogen atom.

Example 5.4. The function space for the case l = 1/2 is L2(R3) ⊗ Vl where Vl is a
two-dimensional vector space carrying an action of the Lie algebra so(3). It turns
out this function space is isomorphic to L2(R3,C2), so we can define a projective
action Π of the group SO(3)

(Π(R)ψ)(x) = Uψ(R−1x) (33)

where R is an element of SO(3) and U one of the two elements of SU(2) associated to
R by the 2-1 homomorphism Φ (the other being −U). We can think of R as rotating
the orbital wavefunction, while U rotates the spin vector which is the 2-d complex
‘orientation’ of the wavefunction.

Recall the standard representations of SO(3) on L2(R3) described in Section 4.
Changing the codomain from C to C2 (or equivalently taking the tensor with a two-
dimensional vector space) doubles the dimension of these representations, so that we
now obtain not the integer, but the half-integer representations.

There are two last points to note. First, the representation of so(3) on Vl is simply
the standard representation, which in this case is the identity. Thus the basis vectors
E1, E2, and E3 get mapped to themselves, which explains the origin of the Pauli spin
matrices for spin-1/2 particles. Second, applying equation (33) to the identity gives
two interpretations:

(Π(I)ψ)(x) = ψ(x) and (Π(I)ψ)(x) = −ψ(x).

The first equation corresponds to the trivial rotation, while the second corresponds
to a rotation by 360◦. The reason we obtain two answers is that there are two non-
equivalent paths to the identity through SO(3), which is because SO(3) is not simply
connected and has fundamental group Z2. This explains the oft-heard statement
that applying a 360◦ rotation to an electron returns the negative of the original
wavefunction. Of course, in the projective representation the two are equivalent.

6 Conclusion

The purpose of this paper has been to give a clear explanation of the mathematics
behind quantum mechanical angular momentum, and how it can be applied to find
solutions to the rotationally invariant Schrödinger equation. We gave an overview of
Lie theory and introduce the groups SU(2) and SO(3). The irreducible representa-
tions of these groups and their Lie algebras describe the invariant subspaces of the
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angular momentum operators and the rotationally invariant Schrödinger equation.
Importantly, not all representations appear directly, but instead must be found using
projective representations. This is because the group SO(3) is not simply connected,
which results in the unusual behavior of spin-1/2 particles where a 360◦ rotation
results in the minus of the wavefunction.

I would like to thank my advisor Brian C. Hall for his advice and lucid explana-
tions, and the members of my Glynn thesis group for offering suggestions to improve
the manuscript.
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