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INTRODUCTION

Integral geometry aims to provide geometric descriptions of statistical invariants of var-
ious ensembles of geometric objects. For example, it studies the relationship between the
expectation of random variables and geometric quantities such as length and area. The
field of integral geometry is inseparable from the Buffon Needle problem. The problem asks
given a floor with equally spaced parallel lines at distance d apart and a needle of length
¢ < d, what is the probability the needle will land on a line.!

However, problems of this type reached an impasse in the paradoxes described by J.
Bertrand. One such paradox is: given a unit circle what is the probability that the length of a
random chord is greater than v/3. If a random chord is determined by its midpoint described
in rectangular coordinates, then the probability is i. If a random chord is determined by
its midpoint described in polar coordinates, then the probability is % If a random chord is
determined by its end points described in polar coordinates, then the probability is % This
paradox was rectified when Poincaré suggested that defining the probability of a geometric
event should be invariant with respect to the natural symmetry group of that particular
geometric problem.

The Crofton formula which was first proved for curves in the plane by M. Crofton is a
classical integral geometry result. The result by M. Crofton says given a curve C in the
plane, consider the function |C' N L| where L is an affine line in the plane. Then

/ |C' N L|dL = 2length(C),
Graff! (R2)

where Graff!(R?) is the set of affine lines in the plane and dL denotes a measure on
Graff!(R?) that is invariant under the group of rigid motions of the Euclidean plane. This
paper explains generalizations of the classical Crofton formula. More precisely, we discuss
the Crofton formula for a C%-curve in R and a codimension 1 submanifold of RY. Note
that in the special case N = 2, a curve in R? is also a codimension 1 submanifold of R2.
The paper begins with a discussion of jacobians of differentiable maps between Riemann
manifolds and describes several practical methods of computing them. Section 2 describes
a key theorem to the proofs of the Crofton formula, namely the coarea formula. We present
two versions of this formula: the Riemannian version and also a version for densities. In

1Specia,l thanks to my advisor Professor Liviu Nicolaescu whose patient expertise was essential to my
understanding of these Crofton Formulee and through out the writing of my senior thesis.
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Section 3 we describe basic geometric facts concerning the Grassmannian of affine hyper-
planes which are needed in the proof of Theorem 4.1 which is the Crofton formula for a
C?-curve in RY. In Section 5 we describe a density on the space of affine lines that is
invariant with respect to the action of the group of rigid motions of the ambient space.
This density is needed in the statement and proof of Theorem 6, the Crofton formula for
an (N — 1)-dimensional submanifold of RY.

1. JACOBIANS OF A LINEAR MAP

Definition 1.1. Suppose that U and V are FEuclidean spaces of dimensions n + k and k
respectively, where k,n > 0. Given a linear map A : U — V, the quantity

J4 = Vdet AA*

is called the Jacobian of the linear map A. O

Example 1.2. (a) Suppose that L : U — R is a linear functional and ey,..., e, is an
orthonormal basis of U. If L; = L(e;) then

Jp=|L||=+\/L3+ -+ L2.

(b) Let A : U — V be a linear map between two Euclidean spaces. Then J4 = 0 if
and only if A is not surjective. Indeed J4 = 0 if and only if ker AA* # 0. Observe that
ker AA* = ker A* = R(A)*, where R(A) denotes the range of A. O

Lemma 1.3. Suppose that U and V are Euclidean spaces of dimension n + k and k
respectively, where k,n > 0, and A : U — V is a surjective linear map. Then there

exist Buclidean coordinates x', ..., " on U, BEuclidean coordinates y',...,y* on V and

positive numbers 1, ..., ug such that, in these coordinates the operator A is described by
y = pal, 1<j<k.

The numbers i3, . .. ,u% are the eigenvalues of the positive symmetric operator AA* 'V —

V so that
M1 U = VdetAA*:JA.

Proof. Let W denote the orthogonal complement of ker A in U. Denote by Ay the restriction
of A to W so that Ay : W — V is a linear isomorphism. Note that W coincides with the
range of the adjoint operator A* : V. — U so that

ApAf = AA™.
We want to find a linear isometry R : V — W such that the operator
B = AoR V-V

is symmetric. Note that since R is an isometry we have R~! = R*. Moreover we have a
commutative diagram



Note that AgA* : V' — V is positive and symmetric. We define
R:= A5(AgA)) Y2V - W,
Let us show that R is indeed an isometry. Indeed, for any v € V' we have
(Rv, Ro) = (A5(AoA5) v, Aj(AA5) ™ ?0) = ((A045) ™ *v, A0A5(AoAf) ' Pv)
= ((ApAp) Y%, (A4} ?v) = (v,v).

Clearly AgR = AgAf(AgAy)~1/? = (AgAf)Y/? is symmetric. Now choose an orthonormal
basis that diagonalizes B. Transport it via R to an orthonormal basis of W. With respect
to these bases of W and V the operator A is described by a diagonal matrix with entries
consisting of the eigenvalues of AgR = (AgAf)'/2.

g

It is convenient to give a more explicit description of J4. This relies on the concept of
Gramm determinant. More precisely, given a collection of vectors ui, ..., uj in an Euclidean
space U we define their Gramm determinant (or Grammian) to be the quantity

G(ul,...,uk) = detS(ul,...,uk), 9(u1,...,uk) = ((ui7uj)U>1<ij<k’

where (—,—)y denotes the inner product in U. Geometrically, /G(uq,...,uy) is the
k-dimensional volume of the parallelipiped spanned by the vectors wq, ..., us,

k
P(uy,...,ug) = {thuj; tj € [0,1] }
j=1

Equivalently

G(ul,...,uk):(ul/\---/\uk,ul/\--J\uk)AkU

where (—, —),xy denotes the inner product on AU induced by the inner product in U.
Note that G(uq,...,u;) = 0 iff the vectors uy, ..., u; are linearly dependent and

G(uy,...,ux) =1
if the vectors uq, ..., u; form an orthonormal system.

Lemma 1.4. Let A: U — V be as in Lemma 1.5. Fiz a basis fr.1,..., i of Ug :=
ker A and vectors u1,...,u, € U such that the vectors Auq,...,Au, span V. Then

o GAur, . AUC(Feri- o o)

1= . (1.1)
G(Ul,.. . 7uk’7fk—|—17"'>fn+k)

Proof. We first prove the result when dimU = dim V. In this case the collection wuq, ..., ug

is a basis of U. Fix an orthonormal basis e1, ..., e of U denote by T : U — U the linear

operator

e — uj.
Then
G(uy,...,ux) =detT*T,
G(Auy,... Auy) = det((AT)*(AT)) = | det T*| det AA*| det T| = J3 det TT*.
To deal with the general case, we denote by Py the orthogonal projection onto Uy. Now

define R R
A:U—->V =VaU, u— Aud Pyu.
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we equip V with the product Euclidean structure.
Let us observe that

Ja=J3.

Indeed, with respect to the direct sum decomposition V=Vva Uy the operator AA* has
the block decomposition

. [A4a* o0
AA_[ ‘ HUO]

so that
det AA* = det AA*.
Observe that in A*¥*"(V @ Uj) we have the equality
Aug A Aug A Fraq Ao A Fogn = Aug A Aup A Frg A A Fran
so that
G(Aur, ..., Aug, Afy i1y Af i) = G(Auy, ..., Aug, Frois s Fok)

G<Au17 v 7Auk7 fk+17 RN fn+k) = G<Au17 s Auk)G(fk—‘rl: vy .fn+k)
Now apply the first part of the proof to deduce that

2o G(Aur, ..., Aug, Af ity Afnis) _ G(Auy, . AW)G(fpprs o Fuin)
A G(u1,...,Uk,fk.+1,...,fn+k) G(u1,...,'U,k,fk+1,...,fn+k)

O

Definition 1.5. Suppose ¢ is a Riemannian metric on the smooth manifold M. The
volume density defined by g is the density denoted by |dV;| which associates to each e €
C*°(det T M) the pointwise length

x = le(x)ly.
If (Uy, (2%,)) is an atlas of M, then on each U, we have top degree forms
dre == dxl A A da™,

to which we associate the density |dz,|. In the coordinates (z%) the metric g can be
described as

g = Z Jasijdrl, @ dzd .
Z"j
We denote by |go| the determinant of the symmetric matrix go = (gasij)1i,jm. Then the
restriction of |dVj| to U, has the description

’dV;]’ =V ‘gadea‘

Suppose now that X and Y are Reimannian manifolds of dimensions n+k and respectively
k, n > 0 equipped with Riemannian metrics gx and gy. We denote by |dVx| and |dVy | the
volume densities induced by gx and respectively gy .

Suppose that F': X — Y is a C'-map such that for any p € M the differential

DpF : TpX — TpgpY
is surjective. We denote by Jp(p) the Jacobian of this map.



2. THE COAREA FORMULA

To develop the coarea formula we need the concept of a Hausdorff measure. Suppose
(X,d) is a separable metric space. Fix a nonnegative real number r. For any positive
number ¢ and any set S C X we set

HI(S) = ‘;i inf { Y (diam B;)"; S ¢ |JB;, diamB; <6
Jj=1 Jj=1
Note that if
0<dp<d = HgO(S) > Hgl(S)

Thus the limit

3 T

%1{% H; (S)
exists and we denote it by H". We should note for most values of r that H"(S) is either
0 or oo; however, there is a unique r called the Hausdorff dimension where the limit is
neither 0 nor co. We now choose r to be the Hausdorff dimension of S. The correspondence
S+ H"(S) is an outer measure satisfying the Caratheodory condition, [7, Chap.12]

dist (Sl, SQ) >0= HT(S1 U SQ) = H’"(Sl) + HT(SQ).
This implies, [7, Chap. 5], that any Borel set B is measurable with respect to H", i.e.,
H (Y)=H"(YNnB)+ H"(Y\B), VY C X.

We denote by o, (X) the set of H"-measurable subsets of X and by H", or H'y the restriction
of H" to 0,(X). The measure H" is called the r-th Hausdorff measure.

Example 2.1. (a) If M is a C'-manifold of dimension m equipped with a C°- Riemann
metric g that induces a metric space structure on M, then for any Borel set B C M we
have

Hyp(B) = voly(B).
In particular, H7Y; coincides with the measure induced by the volume density determined
by g.
(b) If M is a C'-submanifold of dimension k of C! Riemann manifold X of dimension n,
then

H5 (M) = vol (M),
where vol (M) denotes the volume of M with respect to the Riemann metric induced by
the Riemann metric on X.
(c) If X,Y are locally compact metric spaces, F': X — Y is a Lipschitz map with Lipschitz
constant < L, and B C X is a Borel set, then F(B) is H}-measurable and

3y (F(B)) < L'Hk(B).
For proofs of the above statements (a), (b), (¢) we refer to [7, Chap 12]. 0
Theorem 2.2 (Eilenberg inequality). Suppose (X,dx) is a separable metric space and
Y is a C' manifold of dimension k equipped with a C°-Riemann metric g. Denote by

dy : Y xY — R the metric on Y induced by g. Let F': X — Y be a map satisfying the
Lipschitz condition

dy(F($1),F(£L‘2)) < de($1,$2), V$1,$2 e X.
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Then for any m > k there exists a constant®> C(m, k) > 0 such that for any Borel set A C X
we have

/ ' HY (AN F(y))dHF(y) < C(m, k)LFH™(A),
Y

where [ * denotes the upper Lebesque integral, therefore,

t[ﬁykaF*@»wﬁw

= inf {/ Y dH*(y); 0 < J—C}’}_k (A NF Y (y)) <+ and 1 is p — measumble} .
Y

O

For a proof of this inequality we refer to [1, §13.3] or [2, §5.2.1]. As explained in |2,
§5.2.1], this inequality implies the following technical result.

Corollary 2.3. Let F': X — Y be as in Theorem 2.2. Then for any m > k and any Borel
subset A C X the map

YEyH}Cg(l*k(AﬂF_l(y))) € [0, 0]

18 J—C’f/ -measurable. O

Theorem 2.4 (The co-area formula). Suppose X and Y are connected, Riemann C!-
manifolds of dimensions n + k and respectively k, n > 0. If F : X — Y is a C'-map
satisfying the Lipschitz condition

dy (F(z1), F(z2)) < Ldx(z1,22), V1,29 € X,
then, for any J—C}+k—measurable subset A C X we have
[ Ir@arcta@) = [ 9 (An ) o). (2.1)

Corollary 2.5. Let X, Y and F': X — Y be as in Theorem 2.4. Then for any measurable
function ¢ : X — R we have

_ p)
AM@WMM—A(AWMh@WWﬂﬂM>WﬂM, (22)
Proof. Apply (2.4) to ¢ = % O

Corollary 2.6. Suppose X is a C' manifold equipped with a C*-metric gx, and f : X — R
is a C1 function. Then for any measurable function ¢ : X — R we have

_ ¢(p)
t&wmumwﬂ—4<éﬁﬂwﬂmwwummow. 23)
In particular, by setting ¢ = 1 we deduce
1

w kW
2We can choose C(m, k) = —mkk
m



Example 2.7. We want to show how to use (2.4) to compute o, the “area” of the unit
sphere

S" = {(ajo,xl,...,mn) e R™; Zn::ci = 1}.

§=0
Consider f : S™ — R, f(xo,...,2n) = zo. Let p € S™ such that f(p) = zo(p) = ¢t
Denote by ¢ the angle between the radius Op and the xg-axis. Note that

cosp = xp =t.
The gradient of f is the projection of 0, on the tangent plane 7;,S™. We deduce that
IV f ()| = [0z | sing = (1 —1%)!/2.

The level set {f =t} is an (n — 1)-dimensional sphere of radius (1 — ¢2)/2 and we deduce

1 n—2
Vi (P = (1 )72Vl (f = 8) = g (1 £2)5
/{ =y VF )]
Hence
1 n—2 1 n—2
o = an_l/ (1—-t3)"2 dt = 20'n_1/ (1—1t?)"7 dt
-1 0
(t=3)
1
a2 14 . n 1
—anl/o (1-s)2""s2"d —B(2, 2)

The integral

1

B(p,q) = / 21— 2)" e, p,g>0

0

was computed by Euler and Legendre who showed that (see [8, Sec. 12.4])
I'(p)T'(q)
B(p,q) =

#9) I'(p+aq)

Hence
rr
[or%% — (2) 52) (25)
et T

Using the equalities o9 = 2 and I'(1) = /7 we deduce

n

27r%1
L")

g, —

We can obtain easily w,,, the volume of the unit n-dimensional ball,

1 T3 T3
Wy =—0p_1= = .
oo r2) TZ+1)

—~
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Corollary 2.8. Let F' : X — Y be as in Theorem 2.4. Then for any nonnegative measurable
function ¢ : X — R we have

/ () Tp () I () = / ( / so(w)df}czz(x)) a3 (). (2.7)
X Y F=1(y)

Proof. By Theorem 2.4 the equality (2.7) is true when ¢ is the characteristic function of a
measurable subset of X. By linearity, (2.7) is true for linear combinations of such functions.
We now observe that for any measurable nonnegative function ¢ we can find a sequence of
simple functions (¢, ),>1 that converges increasingly and almost everywhere to ¢. O

The above coarea formula implies a counterpart for the integrals of densities. For more
details about densities on manifolds and operations with them we refer to [3, Sec. 3.4.1,
9.1.1].

Corollary 2.9. Suppose X,Y are smooth manifolds of the same dimension n and F : X —
Y is a smooth proper map. Then for any volume density py on Y we have

LI @y ) = [ Fuxta) (2.8)
Proof. Fix metrics gx on X and gy on Y. Then there exists a smooth function py : ¥ — R
such that py = py|dV, |. Then
Fiiy = (py o FYF*[dVyy | = (py © F)Ji|dVyy |
The equality (2.8) now follows from the coarea formula (2.2) applied to the function ¢ =
(py o F)Jp. O

Suppose that X,Y are smooth manifolds and F' : X — Y is a smooth submersion. We
set n = dimY, £k = dimX —dimY > 0. Fix a positive density puy on Y and a density
px on X. The pair of densities px, py define for each y € Y a density # ”X on the fiber

F~Y(y). More precisely, given x € F~1(y) and a basis V4,..., Vj of T, F~ ( ) we set

Hx (Vl Vk) — /’LX(V17' . '7Vk1H17"'H1’L)
Py b o RS T R, By

where Hiq,...,H, € T, X are any n vectors such that Vi,..., Vg, Hy,..., H, is a basis of
T, X. The coarea formula then implies

Lo (5o

3. AFFINE HYPERPLANES

Suppose that X is an N-dimensional Euclidean space with inner product (—, —) and norm
| = ||. Denote by S(X) the unit sphere in X, by Graff!(X) the set of affine hyperplanes
in X, and by RP(X) the projective space of lines through the origin in X. We have a well
known 2 : 1 covering map

S(X) 3 n S [n] :=span(n) € RP(X).
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For any L € Graff!(X) denote by [L]* the line through the origin perpendicular to L. The
resulting map

Graff!(X) 5 L — [L]* € RP(X)

defines a structure of real line bundle Graff!(X) — RP(X) canonically isomorphic to the
tautological line bundle U; — RP(X).
The double cover 7 induces a double cover

7:R x S(X) — Graff' (X),
R x S(X)x 2 (A, n) — Hy, € Graff' (X),
where H) 5, is the hyperplane
Hyp:={ze€X; (n,x)=\}.

The map 7 is equivariant with respect to the natural action of the orthogonal group O(X)
on R x S(X) and Graff'(X). More explicitly, we can view Graff'(X) as the quotient of
R x S(X) modulo the action of the reflection

R:RxS(X)—RxS(X),RA\n)=(—\—n). (3.1)
This reflection preserves the natural product metric on R x S(X) and thus we have a well
defined Riemann metric on Graff!(X), which we will denote by g.
4. THE CROFTON FORMULA FOR CURVES
Suppose that C is simple closed C?-curve in X parametrized by arclength
[0,5] 3 s 7(s), |7 (s)]| =1, S:=length(C).

For any affine hyperplane H € Graff!(X) we denote by |[CNH| € Z>oU{occo} the cardinality
of the intersection C'N H

Theorem 4.1 (Crofton). The function
Graff'(X)> H— |[HNC|€R

is measurable and

/ ‘x) |HNC||dVy(H)| = wn—1length (C') = length (C). (4.1)
Graff* (X

Before proving the theorem we need some preliminary.
Lemma 4.2. The incidence variety
J(C) ={(p.H) € C x Graff (X); pe H }.
is a submanifold of C x Graff!(X).
Proof. Consider the smooth map
Cx S(X)>(pn)S Gp,n)=teR,

where G(p,n) is the dot product of p and n.
The graph of G,

I'g:= {(p,n,t) €[0,5] x S(X) xR}; G(p,n) :t}
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is a submanifold of C' x S(X) x R since G is a smooth map between manifolds. The
involution

R:[0,S] xR x S(X)—1[0,5] xR x S(X), R(s,\,n) = (s,—\, —n)

acts smoothly and freely on I'¢ and J(C) is the quotient of this action and thus it is a
smooth manifold. O

Viewed as a submanifold of C' x Graff!(X), the incidence variety is equipped with the
metric § induced by the product metric on C' x Graff!(X). Consider natural projections

1(C)
/ x
C Graff!(X)
a(p,H) =p, B(p,H)=H.
Note that the fiber 371(H) can be identified with the set H N C. The fiber of a over p € C

can be identified with Graff!(X,p) C Graff!(X), the space of affine hyperplanes through
p. This is the quotient of the Z/2-action on the submanifold

Fp:{()\,n) eERxS(X); (n,p) :/\},

generated by the reflection (A,n) — (=, —n). This is an isometry of R x S(X) and the
metric induced on the quotient Graff!(X,p) coincides with metric as a submanifold of
Graff'(X). Note that F}, is the graph of the function

hp: S(X) =R, hp(n)=(n,p).
As such it is diffeomorphic to S(X).
Lemma 4.3. The projections a and [ satisfy the Lipschitz condition.

Proof. Let dg, dGraHI(X), dCXGraH1(X), and dy(c be the distance functions on C, Graff!(X),

C x Graff!(X), and J(C) respectively.
First we will consider «. Observe that

do(a(py, Hi), a(p2, Hs)) < deygrag! (x) (1, Hi), (p2, H2)) < dycy((p1, Hy), (p2, H)).
The first inequality follows since C' x Graff!(X) has the product metric and
dc(p1,p2) = de(a(pr, Hi), a(pe, H2)).
Next observe that
Aoy Grag! (x) (P @) =
inf{L(w);w : [0,1] — C x Graff'(X) piecewise smooth path joining p to q}

and

dyc)(p, @) = inf{L(w);w : [0, 1] — I(C) piecewise smooth path joining p to q}
where L(w) is the length of w. Since

{L(w);w : [0,1] — I(C) piecewise smooth path joining p to q}

C{L(w);w :[0,1] = C x Graff’(X) piecewise smooth path joining p to q}
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we deduce
Aoy grat (x)((P1; H1), (p1, H1)) < dyco)((p1, Hi), (p2, H2)).
The statement concerning S is proved in a similar fashion. a

We will now prove Theorem 4.1.

Proof. Using the coarea formula (Theorem 2.4) we deduce

J
/ ]HHCHMHHNZ/ Lw%hi/</ j%v)%() (4.2)
Graff! (X) 1(C) C Graff!(X,p)

where J,, Jg are the Jacobians of o and respectively 3, and dV}, denotes the volume along
Graff!(X, p) with respect to the metric induced by the metric § on J(C). Note that

Jﬁ 1 / Jg
dVy = - —dVFE,.
/Graffl(X D) Ja P 2 Fp Ja i

/G-raffl(x) N Ol dVy(H / ( / dVFp) s(p)- (4.3)

To compute the various quantities above we first pick a point
(Po; Ho) = (’7(80)7}[)\0,710) €J3(C).
The tangent space Ty, HO)J(C) is spanned by the velocities at ¢ = 0 of smooth paths
1/} : (_17 1) - J(C)a ¢(0> - (pO,HO)~
Such a path v is described by three paths
s:R —1[0,5], t — s(t), s(0) = so,
AR =R, t— A(t), A(0) = Ao,

Hence

and
n:RS(X), t = n(t), n(0) =ng
subject to the constraint

Upon derivating we deduce
(R, g) + $(m0,7 (s0)) = A.

For simplicity we set vg := 7/(sp) € S(X) and define

c:S(X) =R, ¢(n)=(n,vy), (4.4)
so the above constraint reads _

(12, pg) + $c(no) = A

Fix an orthonormal basis ey, ...,en_; of Ty, S(X) so that

(no,e1) =+ = (ng,en—1) =0.
Viewed as a subspace of

Tp,C x TR x Ty, S(X) =R x R x span(ey, ..., en_1)

we see that T{, 1,)J(C) is described by triplets

(5, \\n) e RxRx X, n L ng,
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satisfying
A= (1, py) + sc(no).
In particular we see that the component \is uniquely determined by the components §, 7.
We write
L(87 ’I’l) = (napO) + C(nU)‘é'
We obtain a basis of T, r,)J(C) consisting of the vectors
u = (0, L(O, 61), 61), e, UN—1 = (0, L(O, eN_l), eN_l),
uy = (1,L(1,0),0) = (1,¢(nyg),0).

Note that the vectors uq,...,uy_1 belong to the kernel of the differential of « at (py, Ho).
On the other hand

Biur = (L(0,e1),e1), Biun-1=(L(0,en—1),en-1),

Biun = (L(l,O),O) = (C(TLQ),O)-
For simplicity we set
Lk = L(O,ek) = (po,ek), k= 1,...,N— 1.

For 1 <5,k <N —1 we have
LiLy, j#k

1+ L3, j=k (Bruj, Brun) = co(no)Ly,

(B*uja B*uk) = {

(Beun, Baun) = c(ng)?.

We deduce (writing for simplicity ¢ instead of ¢(ny))

1+ L% L1L2 L1L3 ce LILN—l CL1
L1L2 1+ L% L2L3 ce LQLN_l CL3
G(Bsu1, ..., Brun) = det : : : : :
LiLy—1 LoLn-y1 L3Ly-1 -+ 1+L3% , cLn—
L CL1 CLQ CL3 cee CLN_1 62 ]
1+L2  Lilo IWLs -+ ILiLy_1 L ]
L1y 1+ L% LoLs oo LoLpn_q Lj
= c* det : : S : :
LiLy-1 LoLn—y L3Ly—y -+ 1+L3%_;, Ly
L Lo Ls e Ly_q 1 |
—A
We have the following elementary fact whose proof we postpone to the end of this section.
det A =1. (4.5)

We then see that
G(Bsutr, . .., feuy) = 2.
Therefore, we see that at the point (sg, Ao, 120) € I(C') we have

Js  Gaur, Beun)  le(no)l

Jo \/G(U17~~-,UN71) _\/G(ulv---auNfl).
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and that ; ()|
1 / 8 1 c(n
z LdVe == dVg,. 4.6
2 Fp Ja P 2 Fp \/(G(ul,...,uN_l) P ( )

Now we have that Fj, is diffeomorphic to S(X) by the following map:

@1 S(X) > Fp, ®(n) = (hp(n),n).
The Jacobian Jg is

Jq> = \/G(@*el, ce ,@*6N_1).
where ey, ..., ex_1 is the orthonormal basis of T},,5(X) defined above. We then note that
for 1 <j < N —1 we have ®,e; = (L(0,¢j),¢e;). Thus, Jp = J,.
By the change of variables under the diffeomorphism ® and (4.4) we see

1 |c(n)] 1/
= dVE, = - (1, v0)[dVs(x)(n). (4.7)
2 Fp \/G(u17"'7uN—1> ? 2 S(X) 0

Choose an orthonormal basis by,...,by of X such that by = vg. Denote by z1,...,zn

the coordinates determined by this basis. Observe that for (z1,...,2yx) € S(X) we have
c(r1,...,TN) = TN.
Denote by S(X )4 the upper hemisphere
S(X); =S(X)n{zny > 0}.
We deduce that

1
5 [ el = [ eadVspom) = [ Vo ).
S(X) S(X)+ S(X)+

To compute the last integral we argue as in Example 2.7. The coarea formula (Theorem

2.4) shows that
L t
/ e(n)dVs(x(n) = / / L Vg | it (4.8)
S(X)+ 0 Cil(t) ¢

Let m € ¢ 1(t) C S(X). Observe that the Jacobian of ¢ at n is ||[Ve(p)||. Denote by ¢ the
angle between n and by so that

cosp = (n,by) =c(n) =t.
The gradient of ¢ is the projection on T,,5(X) of the vector by. More precisely we have
by = (n,by)n + Ve(by) = tby + Ve(by).
Pythagoras’ Theorem implies

Jo(n) = ||Ve(n)| = V1 — 2.

This shows that along c¢~!(¢) we have

t 2\—1/2
=t(1l-t .

-

Using this in (4.8) we deduce

1
/ c(n)dVyx)(n) = / (/ dVC_l(t)> t(1— t2)—1/2dt (4.9)
S(X)y 0 (1)
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The fiber ¢71(t) is an (N — 2)-dimensional round sphere of radius v/1 — #2. Hence
/ d‘/c—l(t) = (1 — t2)¥0']\[,2,
()

where o, denotes the “area” of the round unit k-dimensional sphere. Substituting this in
(4.9) we deduce

N-3

1
/ C(’n)dVS(X)(’I’L) = O'NQ/ t(l - tQ)Tdt
S(X)s 0

1
t—/u O N—_2 N-3 ON_9 N -1
2 /0( u) T du==3 ( 2 >

where we recall that B(x,y) is the Beta function

! I'(z)I'(y)
B(x, ::/sz_ll—sy_lds:, x,y >0
@)= [ = sptas = 5wy
We deduce that

1/’ on_ T(HT(5F)

5 [ Jemlavspom = [ Vs ()

2 Js(x) ) S(X)+ ) 2 TR
= O.Ni = O-N—Z = W

9. N2—1 N _1 N—-1,

where wy, denotes the volume of the unit Euclidean k-dimensional ball. Using this in (4.6)
and (4.7) we deduce

N-—1
26) W 2
/ |H N O |dVy(H)| = wy-1 / ds(p) = wy—1 length (C) & 2 length (C).
Graff!(X) C F(T)
O
Proof of (4.5) We compute det A by computing the eigenvalues of A. Note first that
L? LiL, LWLy -+ ILiLxy_.1 L |
LiLo L% LoLs -+ LoLn_1 Lo
A=1+4+B, B= : : : - : : . (4.10)
LiLy—y LoLn—y LsLy—y -+ L%, Ln-
L Ly Ly -~ Ly 0 |

It turns out that that it is easier to compute the eigenvalues of B. Let C4,...,Cx be the
columns of matrix B. Therefore,

B=[Ci Gy C3 -~ Cn].

Note that Cy = %Ci for all i € {1,2,..., N —1}. Thus, we see that

L
Wi = fl—ﬁfiekerB, Vie{2,...,N—1},
(A
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where f; € RY is the vector
di1
2
fi= .
diN

where (d;5) is the Kronecker symbol. First we compute Bf; and Bf . We set

N—1
T:= Z L?
i=2
and we deduce
N-1 1 N-1
Bf, Z—ZL?’wiq-l-Tﬁ-i-LlfN, Bfy = L, (— ZL?wil‘*'Tfl) :
i=2 =2

We note that (wi,ws,...,wy_2, Bf;,Bfy) is a basis. Now we want to write B in this
basis. Therefore we note,

WE{Z,...,N—l}, Bw;_1 =0
and

T
B(Bf,)=LiBfy+TBf, and B(Bfy) = EBfl'

Thus B is the block diagonal matrix.

s=[ 2],
where
il %]
The eigenvalues of B are
pr=---=pn-2,=0, pn_1, pN

where py_1, uy are the eigenvalues for the 2 x 2 matrix B. First note that
det B = puN—1puN = —T and tr B = UN—1+pun="1T.

We have

det A =det(1+ B) = [J(1+ ) = (1 + pn—1)(1 + )
j=1

:1+MN_1+,MN+MN_1,UN=1+tré+detB:1.
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5. AFFINE LINES

Let GraffY ~1(X) be the set of affine lines in X. Consider the tautological vector bundle
U; — RP(X). This is a subbundle of the trivial vector bundle V' = X x RP(X) — RP(X).
V is equipped with the natural metric and we denote by Ui — RP(X) the orthogonal
complement of U; in V. The fiber of Ui over L € RP(X) is canonically identified with
the orthogonal complement L+ of L € V. The points of Uf- are the pairs (g, L) where
L € RP(X) and g € L*. Consider the following map

Graff V" 1(X) 5 L — [I] € RP(X), (5.1)
where [L] € RP(X) denotes the affine subspace through the origin parallel to L. This
map defines a structure of a real line bundle Graff’¥ ~1(X) — RP(X) that is canonically
isomorphic to to the line bundle Ui — RP(X).

In the sequel, for clarity we will denote by e the inner product in X. Define
P(X):={(n,q) e S(X)xX; qLln}.
Note that P(X) can be identified with the total space of the tangent bundle of the sphere
S(X). Note that
Tigyno)P(X) ={(q,n) € X x X; qeng+qyen=neny=0}.

Denote by p the natural projection P(X) — S(X). Note that p~!'(n) = n'. We have a
natural density dji on P(X) uniquely determined by the requirement

/P(X) flaydntn 4= /s<x) < A DV <‘1)> dVs(x)(n),

where f: P(X) — R is a compactly supported continuous function, dV,, 1 is the Euclidean
volume form on n' and dVg(x) is the natural Euclidean volume form on S(X).
The double cover 7 of RP(X) induces the double cover
7: P(X) — Graff " }(X), P(X) 3 (g,n)~ Lgn € Graff’ (X)),

where Lg n, is the affine line Lq , := g + span(n). The map 7 is equivariant with respect to
the natural action of the orthogonal group O(X) on P(X)
We can view Graff¥ ~!(X) as the quotient of P(X) modulo the action of the reflection

This reflection preserves the density dji on P(X) and thus we have a well defined density
on Graff¥~1(X), which we will denote by dji.
Let us present a local description of dji. Fix a point (ng, qg) € S(X) and a local moving
orthonormal frame (ey,...,ex) of X in a neighborhood U of ng such that
en(n)=n, Yne S(X)NU.
Fix a neighborhood V of q; in X. Then

N-1 N-1
dp = (/\dqer)/\(/\dnoei) .
i=1 j=1

The above description shows that dji coincides with the density on Graff¥~!(X) described
in [5, Sec.Il.12.2]. As explained there, this density is invariant with respect to the action
on GraffV=1(X) of the group of rigid motions of X.



17

6. THE CROFTON FORMULA FOR HYPERSURFACES

Suppose that M is (N — 1)-dimensional submanifold of X. For any affine line L €
GraffV=1(X) we denote by |[LN M| € Z>oU{oo} the cardinality of the intersection LN M.

Theorem 6.1 (Crofton). The function
Graff V"4 X)> L~ |[LNM|€R

is measurable and

/Graerl(x) |L N M| |dp(L)| = (A voly_1(M). (6.1)

Proof. Consider the incidence variety
I(M) = {(p,L) € M x Graff" " }(X); peL}.
Define
J(M) := {(p,n.q) € M x P(X); q=Proj,p},
where Proj,,. p = p— (pen)n is the orthogonal projection onto the orthogonal complement
of span(n).
We have a 2 : 1 covering map J(M) — J(M) that sends (p,n,Proj: p) to the pair

(p, Lgn) € (M), q = Proj,,. p. In fact J(M) is the quotient of J(M) with respect to the
action of the reflection

(p,m,q) < (p,—n, q). (6.2)
The space ﬁ(M ) is a manifold since it is the graph of the map
Proj: M x S(X) — X, Proj(p,n) = Proj,,. p.

We deduce that the incidence variety J(M) is a submanifold of M x Graff¥~1(X).
Consider natural projections

/ \BA , a(p,L)=p, B(p,L)=L.

M GraffV 7 1(X),

Note that the fiber 371(L) can be identified with the set L N\ M. The fiber of o over p € M
can be identified with Graff~1(X,p) ¢ Graff¥ ~1(X), the space of affine lines through
p.

Note that we have a commutative diagram

2:1 ~

GraffV 71(X) A (X)

where 3(1), n,q) = (n,q), ¢ = Proj,,. p. We denote by & the composition
jor) 25 9y - M.
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We deduce
. 1 .
/ LA M| [di(L)| = + / Lan 0 M| |di(n, q)].
GraffV—1(X) 2 Jpx)

We deduce

Using (2.9) we deduce

o B B*dji
prdp(n, q) = /M (/ol—l(p) @*dVM> AV (p),

where dV}; is the volume density induced by the natural metric on M. We conclude that

A 1 Bdji
LNM|du(L) == = dV; ) 6.3
/Graf-le(X) | |d(L) 2 /M (/ay—l(p) a*dVM> w(P) (6:3)

Let us compute

J(M)

/ B
a—1(p) a*dVyy

B(p7 n, Proj,,. p) = (n,Proj,,. p) = (n,p— (pen)n)

) N_1 N-1
B*dj = (/\ d((p—(pon)n)oei)> A ( /\ dnoej>
i=1 Jj=1
N-1 N-1
= (/\(dp—<p-n>dn>-ei> A ( /\ dmej)

i=1

(Raree) o (Rimee)

J=1

We have

Fix a point py € M. Note that
a~'(py) = { (g, m, Proj,. py); m € S(X)}.
Note that we have a natural diffeomorphism
Dp, 1 S(X) — a Ypy), n ®p, (1) = (Py, 1, Proj, . py).

Fix an orthonormal frame (u1,...,un_1,un) of X near p, such that wy is a unit normal
vector field along M. We denote this unit normal vector vield by v(p) so v(p)* = T,M.
Note that the hyperplane n' intersects the hyperplane Tp, M transversally if and only if
n # fv(py). Denote by Fp, the fiber a!(p,) with the points @, (£v(py)) removed. We

have R A
/ Brap [ Brdp
a—1(pp) a*dViy Fpy a*dViy

(6.4)

Fix a point (pg,no,qq) € Fp,, @0 = Proj,+ py, mo # tv(py). Next, fix an orthonormal
frame ey, ...,ey of X along S(X) near ng such that ng = ey (no).
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The hyperplanes n(py)* and nOL intersect transversally along a subspace of dimension
N — 2. We can assume that we have fixed the frames u;, e; so that e;(ng) = u;(py),
Vi=1,...,N—2, ie., ei(no),...,en_2(py) is a basis of v(py)* Nng. Set

~

Uu; = (ui,O,ProjnO ul) S Tp07n07qoj(M), i=1,...,N—1.
Note that

ﬁ*(’dl) = Uu;, dVM(ul, PN ,’U,N_l) =1.
Now observe that

N-1
( /\ ape ei) (al’ S UN-1 ) ‘Po”’loqu = det (’U,Z('no) * ej(nO)) 1<i,y<N-1
i=1 T

= un_1(pg) ® en—1(m0) = cos Z(un_1(py), en—1(no) ).
On the other hand (see Figure 1 for an explanation)

cos Z(un—1(py), en—1(no) ) =sin Z(v(py), no )

My

FIGURE 1. Planes intersecting transversally.

We deduce that

B*dji _ N-1
a*dVy lpymnosao = SIDZ(V(pO)anO) < ]i\l dn e €i> .
=p
We deduce that i | |
g & AVar /s(x) sin s (v(po),m ) 5, p(n)

Now observe that the density on S(X) is none other than the volume density defined by
the round metric so

B / :
— = sin Z(vg,n ) dV. n), vog=v(py). 6.5
[ aeatny = g vom) Vo). v =i (6.5)

=:In(vo)
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Due to the rotational symmetry of the sphere, the integral In(v¢) is independent of v so
it is a number that depends only on the dimension N. More precisely we have the following
lemma.

Lemma 6.2. Let v € S(X). Then

ON-20N _ 2m"/2T
oN_1 p(b)p(ﬂ)'

IN:/ siné(v,n)dVS(X)(n):2
S(X)

Proof. Fix an orthonormal basis by,...,by of X such that by = v. Now let
f:8(X) = [-1,1], f(n)=cosZ(v,n).

Concretely, f(z1,...,zny) = an, Y(z1,...,2n) € S(X), where (z1,...,zy) denote the

Euclidean coordinates determined by the basis by, ..., by. Then by the coarea formula we
have
V 1 —t2
Iy = / sin Z(v,n )dVy x) / / dVi-1y) | dt (6.6)
5(X)
As shown in Example 2.7
Ji(n) =[[Vf(n)|| = V1-# t=f(n)

From (6.6) we deduce

1 1 N2 ! .
Iy = / / defl(t) dt = / (1 - tz)  oN—2dl = 20'N—2/ (1 - t2) dt
—1 \ i -1 ‘

m ! 1 N (M
t—>:f0_N_2/ (1—u)% 1 ldu—UN 2B <2 2> —O'N_Q(Q)E)Q)
0

(25) on_2on _ 27"0(%)

T Tona | TOGLTE)
O

From Lemma 6.2 and equations (6.3), (6.4), and (6.5) we conclude
/ LA M| du(L) = / dVar(p) = PG (M)
12 M\P Volny— .
Graff¥ (X)) 2 Ju INEINEE) '

O

Remark 6.3. (a) Note that, when N = 2, a curve in R? is also a codimension 1 submanifold
of R2. In this case the constants that appear in the Crofton formulee (4.1) and (6.1) coincide

R U0 N (O
R AC N )

(b) When N = 3 the constant that appears in the Crofton formula (4.1) is




and the constant that appears in the Crofton formula (6.1) is
NI
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