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Introduction

Integral geometry aims to provide geometric descriptions of statistical invariants of var-
ious ensembles of geometric objects. For example, it studies the relationship between the
expectation of random variables and geometric quantities such as length and area. The
field of integral geometry is inseparable from the Buffon Needle problem. The problem asks
given a floor with equally spaced parallel lines at distance d apart and a needle of length
` < d, what is the probability the needle will land on a line.1

However, problems of this type reached an impasse in the paradoxes described by J.
Bertrand. One such paradox is: given a unit circle what is the probability that the length of a
random chord is greater than

√
3. If a random chord is determined by its midpoint described

in rectangular coordinates, then the probability is 1
4 . If a random chord is determined by

its midpoint described in polar coordinates, then the probability is 1
2 . If a random chord is

determined by its end points described in polar coordinates, then the probability is 1
3 . This

paradox was rectified when Poincaré suggested that defining the probability of a geometric
event should be invariant with respect to the natural symmetry group of that particular
geometric problem.

The Crofton formula which was first proved for curves in the plane by M. Crofton is a
classical integral geometry result. The result by M. Crofton says given a curve C in the
plane, consider the function |C ∩ L| where L is an affine line in the plane. Then∫

Graff1(R2)
|C ∩ L|dL = 2 length(C),

where Graff1(R2) is the set of affine lines in the plane and dL denotes a measure on
Graff1(R2) that is invariant under the group of rigid motions of the Euclidean plane. This
paper explains generalizations of the classical Crofton formula. More precisely, we discuss
the Crofton formula for a C2-curve in RN and a codimension 1 submanifold of RN . Note
that in the special case N = 2, a curve in R2 is also a codimension 1 submanifold of R2.

The paper begins with a discussion of jacobians of differentiable maps between Riemann
manifolds and describes several practical methods of computing them. Section 2 describes
a key theorem to the proofs of the Crofton formula, namely the coarea formula. We present
two versions of this formula: the Riemannian version and also a version for densities. In

1Special thanks to my advisor Professor Liviu Nicolaescu whose patient expertise was essential to my
understanding of these Crofton Formulæ and through out the writing of my senior thesis.
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Section 3 we describe basic geometric facts concerning the Grassmannian of affine hyper-
planes which are needed in the proof of Theorem 4.1 which is the Crofton formula for a
C2-curve in RN . In Section 5 we describe a density on the space of affine lines that is
invariant with respect to the action of the group of rigid motions of the ambient space.
This density is needed in the statement and proof of Theorem 6, the Crofton formula for
an (N − 1)-dimensional submanifold of RN .

1. Jacobians of a Linear Map

Definition 1.1. Suppose that U and V are Euclidean spaces of dimensions n + k and k
respectively, where k, n ≥ 0. Given a linear map A : U → V , the quantity

JA :=
√

detAA∗

is called the Jacobian of the linear map A. ut

Example 1.2. (a) Suppose that L : U → R is a linear functional and e1, . . . , en is an
orthonormal basis of U . If Li = L(ei) then

JL = ‖L‖ =
√
L2

1 + · · ·+ L2
n.

(b) Let A : U → V be a linear map between two Euclidean spaces. Then JA = 0 if
and only if A is not surjective. Indeed JA = 0 if and only if kerAA∗ 6= 0. Observe that
kerAA∗ = kerA∗ = R(A)⊥, where R(A) denotes the range of A. ut

Lemma 1.3. Suppose that U and V are Euclidean spaces of dimension n + k and k
respectively, where k, n ≥ 0, and A : U → V is a surjective linear map. Then there
exist Euclidean coordinates x1, . . . , xn+k on U , Euclidean coordinates y1, . . . , yk on V and
positive numbers µ1, . . . , µk such that, in these coordinates the operator A is described by

yj = µjx
j , 1 ≤ j ≤ k.

The numbers µ2
1, . . . , µ

2
k are the eigenvalues of the positive symmetric operator AA∗ : V →

V so that
µ1 · · ·µk =

√
detAA∗ = JA.

Proof. LetW denote the orthogonal complement of kerA inU . Denote by A0 the restriction
of A to W so that A0 : W → V is a linear isomorphism. Note that W coincides with the
range of the adjoint operator A∗ : V → U so that

A0A
∗
0 = AA∗.

We want to find a linear isometry R : V →W such that the operator

B = A0R : V → V

is symmetric. Note that since R is an isometry we have R−1 = R∗. Moreover we have a
commutative diagram

W V

V V

w
A0

u

R

w
B

u

1V
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Note that A0A
∗ : V → V is positive and symmetric. We define

R := A∗0(A0A
∗
0)−1/2 : V →W .

Let us show that R is indeed an isometry. Indeed, for any v ∈ V we have

(Rv, Rv) =
(
A∗0(A0A

∗
0)−1/2v, A∗0(A0A

∗
0)−1/2v

)
=
(

(A0A
∗
0)−1/2v, A0A

∗
0(A0A

∗
0)−1/2v

)
=
(

(A0A
∗
0)−1/2v, (A0A

∗
0)1/2v

)
= (v,v).

Clearly A0R = A0A
∗
0(A0A

∗
0)−1/2 = (A0A

∗
0)1/2 is symmetric. Now choose an orthonormal

basis that diagonalizes B. Transport it via R to an orthonormal basis of W . With respect
to these bases of W and V the operator A is described by a diagonal matrix with entries
consisting of the eigenvalues of A0R = (A0A

∗
0)1/2.

ut

It is convenient to give a more explicit description of JA. This relies on the concept of
Gramm determinant. More precisely, given a collection of vectors u1, . . . ,uk in an Euclidean
space U we define their Gramm determinant (or Grammian) to be the quantity

G(u1, . . . ,uk) := detG(u1, . . . ,uk), G(u1, . . . ,uk) :=
(

(ui,uj)U

)
1≤i,j≤k

,

where (−,−)U denotes the inner product in U . Geometrically,
√
G(u1, . . . ,uk) is the

k-dimensional volume of the parallelipiped spanned by the vectors u1, . . . ,uk,

P (u1, . . . ,uk) =
{ k∑
j=1

tjuj ; tj ∈ [0, 1]
}
.

Equivalently
G(u1, . . . ,uk) =

(
u1 ∧ · · · ∧ uk,u1 ∧ · · · ∧ uk

)
ΛkU

where (−,−)ΛkU denotes the inner product on ΛkU induced by the inner product in U .
Note that G(u1, . . . ,uk) = 0 iff the vectors u1, . . . ,uk are linearly dependent and

G(u1, . . . ,uk) = 1

if the vectors u1, . . . ,uk form an orthonormal system.

Lemma 1.4. Let A : U → V be as in Lemma 1.3. Fix a basis fk+1, . . . ,fn+k of U0 :=
kerA and vectors u1, . . . ,uk ∈ U such that the vectors Au1, . . . , Auk span V . Then

J2
A =

G(Au1, . . . Auk)G(fk+1, . . . ,fn+k)

G(u1, . . . ,uk,fk+1, . . . ,fn+k)
. (1.1)

Proof. We first prove the result when dimU = dimV . In this case the collection u1, . . . ,uk
is a basis of U . Fix an orthonormal basis e1, . . . , ek of U denote by T : U → U the linear
operator

ej 7→ uj .

Then
G(u1, . . . ,uk) = detT ∗T,

G(Au1, . . . Auk) = det((AT )∗(AT )) = |detT ∗| detAA∗| detT | = J2
A detTT ∗.

To deal with the general case, we denote by P0 the orthogonal projection onto U0. Now
define

Â : U → V̂ := V ⊕U0, u 7→ Au⊕ P0u.
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we equip V̂ with the product Euclidean structure.
Let us observe that

JA = J
Â
.

Indeed, with respect to the direct sum decomposition V̂ = V ⊕U0 the operator ÂÂ∗ has
the block decomposition

ÂÂ∗ =

[
AA∗ 0

0 1U0

]
so that

det ÂÂ∗ = detAA∗.

Observe that in Λk+n(V ⊕U0) we have the equality

Âu1 ∧ · · · Âuk ∧ fk+1 ∧ · · · ∧ fk+n = Au1 ∧ · · ·Auk ∧ fk+1 ∧ · · · ∧ fk+n

so that

G(Âu1, . . . , Âuk, Âfk+1, . . . , Âfn+k) = G(Âu1, . . . , Âuk,fk+1, . . . ,fn+k)

G(Au1, . . . , Auk,fk+1, . . . ,fn+k) = G(Au1, . . . Auk)G(fk+1, . . . ,fn+k).

Now apply the first part of the proof to deduce that

J2
A = J2

Â
=

G(Âu1, . . . , Âuk, Âfk+1, . . . , Âfn+k)

G(u1, . . . ,uk,fk+1, . . . ,fn+k)
=

G(Au1, . . . Auk)G(fk+1, . . . ,fn+k)

G(u1, . . . ,uk,fk+1, . . . ,fn+k)
.

ut

Definition 1.5. Suppose g is a Riemannian metric on the smooth manifold M . The
volume density defined by g is the density denoted by |dVg| which associates to each e ∈
C∞(detTM) the pointwise length

x 7→ |e(x)|g.
If (Uα, (x

i
α)) is an atlas of M , then on each Uα we have top degree forms

dxα := dx1
α ∧ · · · ∧ dxmα ,

to which we associate the density |dxα|. In the coordinates (xiα) the metric g can be
described as

g =
∑
i,j

gα;ijdx
i
α ⊗ dxjα.

We denote by |gα| the determinant of the symmetric matrix gα = (gα;ij)1i,jm. Then the
restriction of |dVg| to Uα has the description

|dVg| =
√
|gα||dxα|

Suppose now thatX and Y are Reimannian manifolds of dimensions n+k and respectively
k, n ≥ 0 equipped with Riemannian metrics gX and gY . We denote by |dVX | and |dVY | the
volume densities induced by gX and respectively gY .

Suppose that F : X → Y is a C1-map such that for any p ∈M the differential

DpF : TpX → TF (p)Y

is surjective. We denote by JF (p) the Jacobian of this map.
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2. The Coarea Formula

To develop the coarea formula we need the concept of a Hausdorff measure. Suppose
(X, d) is a separable metric space. Fix a nonnegative real number r. For any positive
number δ and any set S ⊂ X we set

Hr
δ (S) :=

ωr
2r

inf

∑
j≥1

(diamBj)
r; S ⊂

⋃
j≥1

Bj , diamBj < δ

 .

Note that if

0 < δ0 < δ1 ⇒ Hr
δ0(S) ≥ Hr

δ1(S).

Thus the limit

lim
δ↘0

Hr
δ (S)

exists and we denote it by Hr. We should note for most values of r that Hr(S) is either
0 or ∞; however, there is a unique r called the Hausdorff dimension where the limit is
neither 0 nor∞. We now choose r to be the Hausdorff dimension of S. The correspondence
S 7→ Hr(S) is an outer measure satisfying the Caratheodory condition, [7, Chap.12]

dist (S1, S2) > 0⇒ Hr(S1 ∪ S2) = Hr(S1) +Hr(S2).

This implies, [7, Chap. 5], that any Borel set B is measurable with respect to Hr, i.e.,

Hr(Y ) = Hr(Y ∩B) +Hr(Y \B), ∀Y ⊂ X.
We denote by σr(X) the set of Hr-measurable subsets of X and by Hr, or Hr

X the restriction
of Hr to σr(X). The measure Hr is called the r-th Hausdorff measure.

Example 2.1. (a) If M is a C1-manifold of dimension m equipped with a C0- Riemann
metric g that induces a metric space structure on M , then for any Borel set B ⊂ M we
have

Hm
M (B) = volg(B).

In particular, Hm
M coincides with the measure induced by the volume density determined

by g.
(b) If M is a C1-submanifold of dimension k of C1 Riemann manifold X of dimension n,
then

Hk
X(M) = vol (M),

where vol (M) denotes the volume of M with respect to the Riemann metric induced by
the Riemann metric on X.
(c) If X,Y are locally compact metric spaces, F : X → Y is a Lipschitz map with Lipschitz
constant ≤ L, and B ⊂ X is a Borel set, then F (B) is Hr

Y -measurable and

Hr
Y

(
F (B)

)
≤ LrHr

X(B).

For proofs of the above statements (a), (b), (c) we refer to [7, Chap 12]. ut

Theorem 2.2 (Eilenberg inequality). Suppose (X, dX) is a separable metric space and
Y is a C1 manifold of dimension k equipped with a C0-Riemann metric g. Denote by
dY : Y × Y → R the metric on Y induced by g. Let F : X → Y be a map satisfying the
Lipschitz condition

dY
(
F (x1), F (x2)

)
≤ LdX(x1, x2), ∀x1, x2 ∈ X.
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Then for any m ≥ k there exists a constant2 C(m, k) > 0 such that for any Borel set A ⊂ X
we have ∫ ∗

Y
Hm−k
X

(
A ∩ F−1(y) )dHk(y) ≤ C(m, k)LkHm(A),

where
∫ ∗

denotes the upper Lebesgue integral, therefore,∫ ∗
Y
Hm−k
X

(
A ∩ F−1(y) )dHk(y)

= inf

{∫
Y
ψ dHk(y); 0 ≤ Hm−k

X

(
A ∩ F−1(y) ) ≤ ψ and ψ is µ−measurable

}
.

ut

For a proof of this inequality we refer to [1, §13.3] or [2, §5.2.1]. As explained in [2,
§5.2.1], this inequality implies the following technical result.

Corollary 2.3. Let F : X → Y be as in Theorem 2.2. Then for any m ≥ k and any Borel
subset A ⊂ X the map

Y 3 y 7→ Hm−k
X

(
A ∩ F−1(y) )

)
∈ [0,∞]

is Hk
Y -measurable. ut

Theorem 2.4 (The co-area formula). Suppose X and Y are connected, Riemann C1-
manifolds of dimensions n + k and respectively k, n ≥ 0. If F : X → Y is a C1-map
satisfying the Lipschitz condition

dY
(
F (x1), F (x2)

)
≤ LdX(x1, x2), ∀x1, x2 ∈ X,

then, for any Hn+k
X -measurable subset A ⊂ X we have∫

A
JF (x)dHn+k

X (x) =

∫
Y
Hn
M

(
A ∩ F−1(y)

)
dHk

Y (y). (2.1)

Corollary 2.5. Let X, Y and F : X → Y be as in Theorem 2.4. Then for any measurable
function φ : X → R we have∫

X
φ(p)|dVX(p)| =

∫
Y

(∫
F−1(q)

φ(p)

JF (p)
|dVF−1(q)(p)|

)
|dVY (q)|, (2.2)

Proof. Apply (2.4) to ϕ = φ
JF

. ut

Corollary 2.6. Suppose X is a C1 manifold equipped with a C1-metric gX , and f : X → R
is a C1 function. Then for any measurable function φ : X → R we have∫

X
φ(p)|dVX(p)| =

∫
R

(∫
{f=t}

φ(p)

|∇f(p)|
|dVf−1(t)(p)|

)
dt. (2.3)

In particular, by setting φ = 1 we deduce

vol (X) =

∫
R

(∫
{f=t}

1

|∇f(p)|
|dVf−1(t)(p)|

)
dt. (2.4)

2We can choose C(m, k) =
ωm−kωk

ωm
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ut

Example 2.7. We want to show how to use (2.4) to compute σn, the “area” of the unit
sphere

Sn =
{

(x0, x1, . . . , xn) ∈ Rn;
n∑
j=0

x2
j = 1

}
.

Consider f : Sn → R, f(x0, . . . , xn) = x0. Let p ∈ Sn such that f(p) = x0(p) = t.
Denote by ϕ the angle between the radius Op and the x0-axis. Note that

cosϕ = x0 = t.

The gradient of f is the projection of ∂x0 on the tangent plane TpS
n. We deduce that

|∇f(p)| = |∂x0 | sinϕ = (1− t2)1/2.

The level set {f = t} is an (n− 1)-dimensional sphere of radius (1− t2)1/2 and we deduce∫
{f=t}

1

|∇f(p)|
|dVf−1(t)(p)| = (1− t2)−1/2vol (f = t) = σn−1(1− t2)

n−2
2 .

Hence

σn = σn−1

∫ 1

−1
(1− t2)

n−2
2 dt = 2σn−1

∫ 1

0
(1− t2)

n−2
2 dt

(t =
√
s)

= σn−1

∫ 1

0
(1− s)

n
2
−1s

1
2
−1ds = B

(n
2
,
1

2

)
.

The integral

B(p, q) =

∫ 1

0
xp−1(1− x)q−1dx, p, q > 0

was computed by Euler and Legendre who showed that (see [8, Sec. 12.4])

B(p, q) =
Γ(p)Γ(q)

Γ(p+ q)
.

Hence

σn
σn−1

=
Γ(n2 )Γ(1

2)

Γ(n+1
2 )

. (2.5)

Using the equalities σ0 = 2 and Γ(1
2) =

√
π we deduce

σn =
2π

n+1
2

Γ(n+1
2 )

.

We can obtain easily ωn, the volume of the unit n-dimensional ball,

ωn =
1

n
σn−1 =

π
n
2

n
2 Γ(n2 )

=
π

n
2

Γ(n2 + 1)
. (2.6)

ut
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Corollary 2.8. Let F : X → Y be as in Theorem 2.4. Then for any nonnegative measurable
function ϕ : X → R we have∫

X
ϕ(x)JF (x)dHn+k

X (x) =

∫
Y

(∫
F−1(y)

ϕ(x)dHn
X(x)

)
dHk

Y (y). (2.7)

Proof. By Theorem 2.4 the equality (2.7) is true when ϕ is the characteristic function of a
measurable subset of X. By linearity, (2.7) is true for linear combinations of such functions.
We now observe that for any measurable nonnegative function ϕ we can find a sequence of
simple functions (ϕν)ν≥1 that converges increasingly and almost everywhere to ϕ. ut

The above coarea formula implies a counterpart for the integrals of densities. For more
details about densities on manifolds and operations with them we refer to [3, Sec. 3.4.1,
9.1.1].

Corollary 2.9. Suppose X,Y are smooth manifolds of the same dimension n and F : X →
Y is a smooth proper map. Then for any volume density µY on Y we have∫

Y
|F−1(y)|dµY (y) =

∫
X
F ∗µX(x). (2.8)

Proof. Fix metrics gX on X and gY on Y . Then there exists a smooth function ρY : Y → R
such that µY = ρY |dVgY |. Then

F ∗µY = (ρY ◦ F )F ∗|dVgY | = (ρY ◦ F )JF |dVgX |.

The equality (2.8) now follows from the coarea formula (2.2) applied to the function φ =
(ρY ◦ F )JF . ut

Suppose that X,Y are smooth manifolds and F : X → Y is a smooth submersion. We
set n = dimY , k = dimX − dimY > 0. Fix a positive density µY on Y and a density
µX on X. The pair of densities µX , µY define for each y ∈ Y a density µX

F ∗µY
on the fiber

F−1(y). More precisely, given x ∈ F−1(y) and a basis V1, . . . , Vk of TxF
−1(y) we set

µX
F ∗µY

(V1, . . . , Vk) :=
µX(V1, . . . , Vk, H1, . . . Hn)

µY (F∗H1, . . . , F∗Hn)
,

where H1, . . . ,Hn ∈ TxX are any n vectors such that V1, . . . , Vk, H1, . . . ,Hn is a basis of
TxX. The coarea formula then implies∫

X
µX =

∫
Y

(∫
F−1(y)

µX
F ∗µY

)
µY (2.9)

3. Affine Hyperplanes

Suppose thatX is an N -dimensional Euclidean space with inner product (−,−) and norm
‖ − ‖. Denote by S(X) the unit sphere in X, by Graff1(X) the set of affine hyperplanes
in X, and by RP(X) the projective space of lines through the origin in X. We have a well
known 2 : 1 covering map

S(X) 3 n π7→ [n] := span(n) ∈ RP(X).
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For any L ∈ Graff1(X) denote by [L]⊥ the line through the origin perpendicular to L. The
resulting map

Graff1(X) 3 L 7→ [L]⊥ ∈ RP(X)

defines a structure of real line bundle Graff1(X)→ RP(X) canonically isomorphic to the
tautological line bundle U1 → RP(X).

The double cover π induces a double cover

π̃ : R× S(X)→ Graff1(X),

R× S(X)× 3 (λ,n) 7→ Hλ,n ∈ Graff1(X),

where Hλ,n is the hyperplane

Hλ,n :=
{
x ∈X; (n,x) = λ

}
.

The map π̃ is equivariant with respect to the natural action of the orthogonal group O(X)
on R× S(X) and Graff1(X). More explicitly, we can view Graff1(X) as the quotient of
R× S(X) modulo the action of the reflection

R : R× S(X)→ R× S(X), R(λ,n) = (−λ,−n). (3.1)

This reflection preserves the natural product metric on R× S(X) and thus we have a well
defined Riemann metric on Graff1(X), which we will denote by g.

4. The Crofton formula for Curves

Suppose that C is simple closed C2-curve in X parametrized by arclength

[0, S] 3 s 7→ γ(s), ‖γ′(s)‖ = 1, S := length (C).

For any affine hyperplane H ∈ Graff1(X) we denote by |C∩H| ∈ Z≥0∪{∞} the cardinality
of the intersection C ∩H

Theorem 4.1 (Crofton). The function

Graff1(X) 3 H 7→ |H ∩ C| ∈ R

is measurable and∫
Graff1(X)

|H ∩ C| |dVg(H)| = ωN−1length (C) =
π

N−1
2

Γ(N+1
2 )

length (C). (4.1)

Before proving the theorem we need some preliminary.

Lemma 4.2. The incidence variety

I(C) =
{

(p, H) ∈ C ×Graff1(X); p ∈ H
}
.

is a submanifold of C ×Graff1(X).

Proof. Consider the smooth map

C × S(X) 3 (p,n)
G7→ G(p,n) = t ∈ R,

where G(p,n) is the dot product of p and n.
The graph of G,

ΓG :=
{

(p,n, t) ∈ [0, S]× S(X)× R}; G(p,n) = t
}
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is a submanifold of C × S(X) × R since G is a smooth map between manifolds. The
involution

R̃ : [0, S]× R× S(X)→ [0, S]× R× S(X), R̃(s, λ,n) = (s,−λ,−n)

acts smoothly and freely on ΓG and I(C) is the quotient of this action and thus it is a
smooth manifold. ut

Viewed as a submanifold of C ×Graff1(X), the incidence variety is equipped with the
metric ĝ induced by the product metric on C ×Graff1(X). Consider natural projections

I(C)

C Graff1(X)

'
'
'')
β[

[
[
[̂

α

α(p, H) = p, β(p, H) = H.

Note that the fiber β−1(H) can be identified with the set H ∩C. The fiber of α over p ∈ C
can be identified with Graff1(X,p) ⊂ Graff1(X), the space of affine hyperplanes through
p. This is the quotient of the Z/2-action on the submanifold

Fp =
{

(λ,n) ∈ R× S(X); (n,p) = λ
}
,

generated by the reflection (λ,n) → (−λ,−n). This is an isometry of R × S(X) and the
metric induced on the quotient Graff1(X,p) coincides with metric as a submanifold of
Graff1(X). Note that Fp is the graph of the function

hp : S(X)→ R, hp(n) = (n,p).

As such it is diffeomorphic to S(X).

Lemma 4.3. The projections α and β satisfy the Lipschitz condition.

Proof. Let dC , dGraff1(X), dC×Graff1(X), and dI(C) be the distance functions on C, Graff1(X),

C ×Graff1(X), and I(C) respectively.
First we will consider α. Observe that

dC(α(p1, H1), α(p2, H2)) ≤ dC×Graff1(X)((p1, H1), (p2, H2)) ≤ dI(C)((p1, H1), (p2, H2)).

The first inequality follows since C ×Graff1(X) has the product metric and

dC(p1, p2) = dC(α(p1, H1), α(p2, H2)).

Next observe that

dC×Graff1(X)(p, q) =

inf{L(ω);ω : [0, 1]→ C ×Graff1(X) piecewise smooth path joining p to q}
and

dI(C)(p, q) = inf{L(ω);ω : [0, 1]→ I(C) piecewise smooth path joining p to q}
where L(ω) is the length of ω. Since

{L(ω);ω : [0, 1]→ I(C) piecewise smooth path joining p to q}
⊆{L(ω);ω : [0, 1]→ C ×Graff1(X) piecewise smooth path joining p to q}
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we deduce
dC×Graff1(X)((p1, H1), (p1, H1)) ≤ dI(C)((p1, H1), (p2, H2)).

The statement concerning β is proved in a similar fashion. ut

We will now prove Theorem 4.1.

Proof. Using the coarea formula (Theorem 2.4) we deduce∫
Graff1(X)

|H ∩ C| |dVg(H)| =
∫
I(C)

Jβ|dVĝ| =
∫
C

(∫
Graff1(X,p)

Jβ
Jα
dVp

)
ds(p), (4.2)

where Jα, Jβ are the Jacobians of α and respectively β, and dVp denotes the volume along

Graff1(X,p) with respect to the metric induced by the metric ĝ on I(C). Note that∫
Graff1(X,p)

Jβ
Jα
dVp =

1

2

∫
Fp

Jβ
Jα
dVFp .

Hence ∫
Graff1(X)

|H ∩ C| dVg(H)| =
∫
C

(
1

2

∫
Fp

Jβ
Jα
dVFp

)
ds(p). (4.3)

To compute the various quantities above we first pick a point

(p0, H0) = (γ(s0), Hλ0,n0) ∈ I(C).

The tangent space T(p0,H0)I(C) is spanned by the velocities at t = 0 of smooth paths

ψ : (−1, 1)→ I(C), ψ(0) = (p0, H0).

Such a path ψ is described by three paths

s : R→ [0, S], t 7→ s(t), s(0) = s0,

λ : R→ R, t 7→ λ(t), λ(0) = λ0,

and
n : RS(X), t 7→ n(t), n(0) = n0

subject to the constraint
(n(t), γ(s(t))) = λ(t).

Upon derivating we deduce

(ṅ,p0) + ṡ
(
n0, γ

′(s0)
)

= λ̇.

For simplicity we set v0 := γ′(s0) ∈ S(X) and define

c : S(X)→ R, c(n) = (n,v0), (4.4)

so the above constraint reads
(ṅ,p0) + ṡc(n0) = λ̇.

Fix an orthonormal basis e1, . . . , eN−1 of Tn0S(X) so that

(n0, e1) = · · · = (n0, eN−1) = 0.

Viewed as a subspace of

Tp0C × Tλ0R× Tn0S(X) = R× R× span(e1, . . . , eN−1)

we see that T(p0,H0)I(C) is described by triplets

(ṡ, λ̇, ṅ) ∈ R× R×X, ṅ ⊥ n0,
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satisfying

λ̇ = (ṅ,p0) + ṡc(n0).

In particular we see that the component λ̇ is uniquely determined by the components ṡ, ṅ.
We write

L(ṡ, ṅ) := (ṅ,p0) + c(n0)ṡ.

We obtain a basis of T(p0,H0)I(C) consisting of the vectors

u1 := (0, L(0, e1), e1), . . . ,uN−1 := (0, L(0, eN−1), eN−1),

uN := (1, L(1, 0), 0) =
(

1, c(n0), 0
)
.

Note that the vectors u1, . . . ,uN−1 belong to the kernel of the differential of α at (p0, H0).
On the other hand

β∗u1 = (L(0, e1), e1), β∗uN−1 = (L(0, eN−1), eN−1),

β∗uN = (L(1, 0), 0) = (c(n0), 0).

For simplicity we set

Lk := L(0, ek) = (p0, ek), k = 1, . . . , N − 1.

For 1 ≤ j, k ≤ N − 1 we have

(β∗uj , β∗uk) =

{
LjLk, j 6= k

1 + L2
k, j = k

, (β∗uj , β∗uN ) = c0(n0)Lj ,

(β∗uN , β∗uN ) = c(n0)2.

We deduce (writing for simplicity c instead of c(n0))

G(β∗u1, . . . , β∗uN ) = det


1 + L2

1 L1L2 L1L3 · · · L1LN−1 cL1

L1L2 1 + L2
2 L2L3 · · · L2LN−1 cL3

...
...

...
. . .

...
...

L1LN−1 L2LN−1 L3LN−1 · · · 1 + L2
N−1 cLN−1

cL1 cL2 cL3 · · · cLN−1 c2



= c2 det


1 + L2

1 L1L2 L1L3 · · · L1LN−1 L1

L1L2 1 + L2
2 L2L3 · · · L2LN−1 L3

...
...

...
. . .

...
...

L1LN−1 L2LN−1 L3LN−1 · · · 1 + L2
N−1 LN−1

L1 L2 L3 · · · LN−1 1


︸ ︷︷ ︸

=:A

.

We have the following elementary fact whose proof we postpone to the end of this section.

detA = 1. (4.5)

We then see that

G(β∗u1, . . . , β∗uN ) = c2.

Therefore, we see that at the point (s0, λ0,n0) ∈ I(C) we have

Jβ
Jα

=

√
G(β∗u1, . . . , β∗uN )√
G(u1, . . . ,uN−1)

=
|c(n0)|√

G(u1, . . . ,uN−1)
.
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and that
1

2

∫
Fp

Jβ
Jα
dVFp =

1

2

∫
Fp

|c(n)|√
G(u1, . . . ,uN−1)

dVFp . (4.6)

Now we have that Fp is diffeomorphic to S(X) by the following map:

Φ : S(X)→ Fp, Φ(n) = (hp(n),n).

The Jacobian JΦ is

JΦ =
√
G(Φ∗e1, · · · ,Φ∗eN−1).

where e1, . . . , eN−1 is the orthonormal basis of Tn0S(X) defined above. We then note that
for 1 ≤ j ≤ N − 1 we have Φ∗ej = (L(0, ej), ej). Thus, JΦ = Jα.

By the change of variables under the diffeomorphism Φ and (4.4) we see

1

2

∫
Fp

|c(n)|√
G(u1, . . . ,uN−1)

dVFp =
1

2

∫
S(X)

|(n,v0)|dVS(X)(n). (4.7)

Choose an orthonormal basis b1, . . . ,bN of X such that bN = v0. Denote by x1, . . . , xN
the coordinates determined by this basis. Observe that for (x1, . . . , xN ) ∈ S(X) we have

c(x1, . . . , xN ) = xN .

Denote by S(X)+ the upper hemisphere

S(X)+ = S(X) ∩ {xN ≥ 0}.
We deduce that

1

2

∫
S(X)

|(n,v0)|dVS(X)(n) =

∫
S(X)+

(n,v0)dVS(X)(n) =

∫
S(X)+

c(n)dVS(X)(n).

To compute the last integral we argue as in Example 2.7. The coarea formula (Theorem
2.4) shows that ∫

S(X)+

c(n)dVS(X)(n) =

∫ 1

0

(∫
c−1(t)

t

Jc
dVc−1(t)

)
dt. (4.8)

Let n ∈ c−1(t) ⊂ S(X). Observe that the Jacobian of c at n is ‖∇c(p)‖. Denote by ϕ the
angle between n and bN so that

cosϕ = (n,bN ) = c(n) = t.

The gradient of c is the projection on TnS(X) of the vector bN . More precisely we have

bN = (n,bN )n+∇c(bN ) = tbN +∇c(bN ).

Pythagoras’ Theorem implies

Jc(n) = ‖∇c(n)‖ =
√

1− t2.
This shows that along c−1(t) we have

t

Jc
= t(1− t2)−1/2.

Using this in (4.8) we deduce∫
S(X)+

c(n)dVS(X)(n) =

∫ 1

0

(∫
c−1(t)

dVc−1(t)

)
t(1− t2)−1/2dt (4.9)



14

The fiber c−1(t) is an (N − 2)-dimensional round sphere of radius
√

1− t2. Hence∫
c−1(t)

dVc−1(t) = (1− t2)
N−2

2 σN−2,

where σk denotes the “area” of the round unit k-dimensional sphere. Substituting this in
(4.9) we deduce ∫

S(X)+

c(n)dVS(X)(n) = σN−2

∫ 1

0
t(1− t2)

N−3
2 dt

t→
√
u

=
σN−2

2

∫ 1

0

(
1− u

)N−3
2 du =

σN−2

2
B

(
1,
N − 1

2

)
,

where we recall that B(x, y) is the Beta function

B(x, y) :=

∫ 1

0
sx−1(1− s)y−1ds =

Γ(x)Γ(y)

Γ(x+ y)
, x, y > 0.

We deduce that

1

2

∫
S(X)

|c(n)|dVS(X)(n) =

∫
S(X)+

c(n)dVS(X)(n) =
σN−2

2

Γ(1)Γ(N−1
2 )

Γ(N+1
2 )

=
σN−2

2 · N−1
2

=
σN−2

N − 1
= ωN−1,

where ωk denotes the volume of the unit Euclidean k-dimensional ball. Using this in (4.6)
and (4.7) we deduce∫

Graff1(X)
|H ∩ C| |dVg(H)| = ωN−1

∫
C
ds(p) = ωN−1 length (C)

(2.6)
=

π
N−1

2

Γ(N+1
2 )

length (C).

ut

Proof of (4.5) We compute detA by computing the eigenvalues of A. Note first that

A = 1 +B, B =


L2

1 L1L2 L1L3 · · · L1LN−1 L1

L1L2 L2
2 L2L3 · · · L2LN−1 L2

...
...

...
. . .

...
...

L1LN−1 L2LN−1 L3LN−1 · · · L2
N−1 LN−1

L1 L2 L3 · · · LN−1 0

 . (4.10)

It turns out that that it is easier to compute the eigenvalues of B. Let C1, . . . , CN be the
columns of matrix B. Therefore,

B =
[
C1 C2 C3 · · · CN

]
.

Note that C1 = L1
Li
Ci for all i ∈ {1, 2, . . . , N − 1}. Thus, we see that

wi−1 := f1 −
L1

Li
f i ∈ kerB, ∀i ∈ {2, . . . , N − 1},
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where f i ∈ RN is the vector

f i =


δi1
δi2
...
δiN


where (δij) is the Kronecker symbol. First we compute Bf1 and BfN . We set

T :=
N−1∑
i=2

L2
i

and we deduce

Bf1 = −
N−1∑
i=2

L2
iwi−1 + Tf1 + L1fN , BfN =

1

L1

(
−
N−1∑
i=2

L2
iwi−1 + Tf1

)
.

We note that (w1,w2, . . . ,wN−2, Bf1, BfN ) is a basis. Now we want to write B in this
basis. Therefore we note,

∀i ∈ {2, . . . , N − 1}, Bwi−1 = 0

and

B(Bf1) = L1BfN + TBf1 and B(BfN ) =
T

L1
Bf1.

Thus B is the block diagonal matrix.

B =

[
0 0

0 B̃

]
,

where

B̃ =

[
T T

L1

L1 0

]
.

The eigenvalues of B are

µ1 = · · · = µN−2,= 0, µN−1, µN

where µN−1, µN are the eigenvalues for the 2× 2 matrix B̃. First note that

det B̃ = µN−1µN = −T and tr B̃ = µN−1 + µN = T.

We have

detA = det(1 +B) =

n∏
j=1

(1 + µj) = (1 + µN−1)(1 + µN )

= 1 + µN−1 + µN + µN−1µN = 1 + tr B̃ + det B̃ = 1.

ut
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5. Affine Lines

Let GraffN−1(X) be the set of affine lines in X. Consider the tautological vector bundle
U1 → RP(X). This is a subbundle of the trivial vector bundle V = X ×RP(X)→ RP(X).
V is equipped with the natural metric and we denote by U⊥1 → RP(X) the orthogonal
complement of U1 in V . The fiber of U⊥1 over L ∈ RP(X) is canonically identified with
the orthogonal complement L⊥ of L ∈ V . The points of U⊥1 are the pairs (q, L) where
L ∈ RP(X) and q ∈ L⊥. Consider the following map

GraffN−1(X) 3 L 7→ [L] ∈ RP(X), (5.1)

where [L] ∈ RP(X) denotes the affine subspace through the origin parallel to L. This
map defines a structure of a real line bundle GraffN−1(X) → RP(X) that is canonically
isomorphic to to the line bundle U⊥1 → RP(X).

In the sequel, for clarity we will denote by • the inner product in X. Define

P (X) :=
{

(n, q) ∈ S(X)×X; q ⊥ n
}
.

Note that P (X) can be identified with the total space of the tangent bundle of the sphere
S(X). Note that

T(q0,n0)P (X) =
{

(q̇, ṅ) ∈X ×X; q̇ • n0 + q0 • ṅ = ṅ • n0 = 0
}
.

Denote by p the natural projection P (X) → S(X). Note that p−1(n) = n⊥. We have a
natural density dµ̂ on P (X) uniquely determined by the requirement∫

P (X)
f(n, q)dµ̂(n, q) =

∫
S(X)

(∫
n⊥

f(n, q)dVn⊥(q)

)
dVS(X)(n),

where f : P (X)→ R is a compactly supported continuous function, dVn⊥ is the Euclidean
volume form on n⊥ and dVS(X) is the natural Euclidean volume form on S(X).

The double cover π of RP(X) induces the double cover

π̂ : P (X)→ GraffN−1(X), P (X) 3 (q,n) 7→ Lq,n ∈ GraffN−1(X),

where Lq,n is the affine line Lq,n := q+ span(n). The map π̂ is equivariant with respect to
the natural action of the orthogonal group O(X) on P (X)

We can view GraffN−1(X) as the quotient of P (X) modulo the action of the reflection

R̂ : P (X)→ P (X), R̂(q,n) = (q,−n). (5.2)

This reflection preserves the density dµ̂ on P (X) and thus we have a well defined density
on GraffN−1(X), which we will denote by dµ̂.

Let us present a local description of dµ̂. Fix a point (n0, q0) ∈ S(X) and a local moving
orthonormal frame (e1, . . . , eN ) of X in a neighborhood U of n0 such that

eN (n) = n, ∀n ∈ S(X) ∩ U.
Fix a neighborhood V of q0 in X. Then

dµ̂ =

∣∣∣∣∣∣
(
N−1∧
i=1

dq • ei

)
∧

(
N−1∧
j=1

dn • ei

)∣∣∣∣∣∣ .
The above description shows that dµ̂ coincides with the density on GraffN−1(X) described
in [5, Sec.II.12.2]. As explained there, this density is invariant with respect to the action
on GraffN−1(X) of the group of rigid motions of X.
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6. The Crofton Formula for Hypersurfaces

Suppose that M is (N − 1)-dimensional submanifold of X. For any affine line L ∈
GraffN−1(X) we denote by |L∩M | ∈ Z≥0∪{∞} the cardinality of the intersection L∩M .

Theorem 6.1 (Crofton). The function

GraffN−1(X) 3 L 7→ |L ∩M | ∈ R

is measurable and∫
GraffN−1(X)

|L ∩M | |dµ̂(L)| =
π

N
2 Γ(N2 )

Γ(N−1
2 )Γ(N+1

2 )
volN−1(M). (6.1)

Proof. Consider the incidence variety

I(M) :=
{

(p, L) ∈M ×GraffN−1(X); p ∈ L
}
.

Define

Î(M) :=
{

(p,n, q) ∈M × P (X); q = Proj⊥n p
}
,

where Projn⊥ p = p−(p•n)n is the orthogonal projection onto the orthogonal complement
of span(n).

We have a 2 : 1 covering map Î(M) → I(M) that sends (p,n,Proj⊥n p) to the pair

(p, Lq,n) ∈ I(M), q = Projn⊥ p. In fact I(M) is the quotient of Î(M) with respect to the
action of the reflection

(p,n, q)↔ (p,−n, q). (6.2)

The space Î(M) is a manifold since it is the graph of the map

Proj : M × S(X)→X, Proj(p,n) = Projn⊥ p.

We deduce that the incidence variety I(M) is a submanifold of M ×GraffN−1(X).
Consider natural projections

I(M)

M GraffN−1(X),







�
βA

A
A
AAD

α , α(p, L) = p, β(p, L) = L.

Note that the fiber β−1(L) can be identified with the set L∩M . The fiber of α over p ∈M
can be identified with GraffN−1(X,p) ⊂ GraffN−1(X), the space of affine lines through
p.

Note that we have a commutative diagram

I(M) Î(M)

GraffN−1(X) P (X)

u

β

u

2:1

u

β̂

u

2:1

where β̂(p,n, q) = (n, q), q = Projn⊥ p. We denote by α̂ the composition

Î(M)
2:1−→ I(M)

α−→M.
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We deduce ∫
GraffN−1(X)

|L ∩M | |dµ̂(L)| = 1

2

∫
P (X)

|Lq,n ∩M | |dµ̂(n, q)|.

We deduce ∫
P (X)

|Lq,n ∩M | |dµ̂(n, q)| (2.8)
=

∫
Î(M)

β̂∗dµ̂(n, q),∫
GraffN−1(X)

|L ∩M | dµ̂(L) =
1

2

∫
Î(M)

β̂∗dµ̂(n, q).

Using (2.9) we deduce∫
Î(M)

β̂∗dµ̂(n, q) =

∫
M

(∫
α̂−1(p)

β̂∗dµ̂

α̂∗dVM

)
dVM (p),

where dVM is the volume density induced by the natural metric on M . We conclude that∫
GraffN−1(X)

|L ∩M | dµ̂(L) =
1

2

∫
M

(∫
α̂−1(p)

β̂∗dµ̂

α̂∗dVM

)
dVM (p). (6.3)

Let us compute ∫
α̂−1(p)

β̂∗µ

α̂∗dVM
We have

β̂(p,n,Projn⊥ p) = (n,Projn⊥ p) = (n,p− (p • n)n)

β̂∗dµ̂ =

∣∣∣∣∣∣
(
N−1∧
i=1

d
(

(p− (p • n)n) • ei
))
∧

(
N−1∧
j=1

dn • ej

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
N−1∧
i=1

(dp− (p • n)dn) • ei

)
∧

(
N−1∧
j=1

dn • ej

)∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
N−1∧
i=1

dp • ei

)
∧

(
N−1∧
j=1

dn • ej

)∣∣∣∣∣∣
Fix a point p0 ∈M . Note that

α̂−1(p0) =
{

(p0,n,Projn⊥ p0); n ∈ S(X)
}
.

Note that we have a natural diffeomorphism

Φp0 : S(X)→ α̂−1(p0), n 7→ Φp0(n) = (p0,n,Projn⊥ p0).

Fix an orthonormal frame (u1, . . . ,uN−1,uN ) of X near p0 such that uN is a unit normal
vector field along M . We denote this unit normal vector vield by ν(p) so ν(p)⊥ = TpM .

Note that the hyperplane n⊥ intersects the hyperplane Tp0M transversally if and only if

n 6= ±ν(p0). Denote by Fp0 the fiber α−1(p0) with the points Φp0(±ν(p0)) removed. We
have ∫

α̂−1(p0)

β̂∗dµ̂

α̂∗dVM
=

∫
Fp0

β̂∗dµ̂

α̂∗dVM
(6.4)

Fix a point (p0,n0, q0) ∈ Fp0 , q0 = Projn⊥0
p0, n0 6= ±ν(p0). Next, fix an orthonormal

frame e1, . . . , eN of X along S(X) near n0 such that n0 = eN (n0).
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The hyperplanes n(p0)⊥ and n⊥0 intersect transversally along a subspace of dimension
N − 2. We can assume that we have fixed the frames ui, ej so that ej(n0) = uj(p0),

∀j = 1, . . . , N − 2, i.e., e1(n0), . . . , eN−2(p0) is a basis of ν(p0)⊥ ∩ n⊥0 . Set

ûi := (ui, 0,Projn0
ui) ∈ Tp0,n0,q0 Î(M), i = 1, . . . , N − 1.

Note that
β̂∗(ûi) = ui, dVM (u1, . . . ,uN−1) = 1.

Now observe that(
N−1∧
i=1

dp • ei

)(
û1, . . . , ûN−1

)∣∣
p0,n0,q0

= det
(
ui(n0) • ej(n0)

)
1≤i,j≤N−1

= uN−1(p0) • eN−1(n0) = cos∠
(
uN−1(p0), eN−1(n0)

)
.

On the other hand (see Figure 1 for an explanation)

cos∠
(
uN−1(p0), eN−1(n0)

)
= sin∠

(
ν(p0),n0

)

e

u
N-1

N-1

n h n
0

Figure 1. Planes intersecting transversally.

We deduce that

β∗dµ̂

α̂∗dVM

∣∣∣
p0,n0,q0

= sin∠
(
ν(p0),n0

) ∣∣∣∣∣∣
(

N−1∧
j=1

dn • ei

)∣∣∣∣∣∣︸ ︷︷ ︸
=:ρ

∣∣∣
n0

We deduce that ∫
Fp0

β∗dµ̂

α̂∗dVM
=

∫
S(X)

sin∠
(
ν(p0),n

)
Φ∗p0ρ(n)

Now observe that the density on S(X) is none other than the volume density defined by
the round metric so∫

Fp0

β∗µ

α̂∗dVM
=

∫
S(X)

sin∠
(
ν0,n

)
dVS(X)(n)︸ ︷︷ ︸

=:IN (ν0)

, ν0 = ν(p0). (6.5)
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Due to the rotational symmetry of the sphere, the integral IN (ν0) is independent of ν0 so
it is a number that depends only on the dimension N . More precisely we have the following
lemma.

Lemma 6.2. Let ν ∈ S(X). Then

IN =

∫
S(X)

sin∠
(
ν,n

)
dVS(X)(n) = 2

σN−2σN
σN−1

=
2πn/2Γ(N2 )

Γ(N−1
2 )Γ(N+1

2 )
.

Proof. Fix an orthonormal basis b1, . . . ,bN of X such that bN = ν. Now let

f : S(X)→ [−1, 1], f(n) = cos∠
(
ν,n

)
.

Concretely, f(x1, . . . , xN ) = xN , ∀(x1, . . . , xN ) ∈ S(X), where (x1, . . . , xN ) denote the
Euclidean coordinates determined by the basis b1, . . . ,bN . Then by the coarea formula we
have

IN =

∫
S(X)

sin∠
(
ν,n

)
dVS(X)(n) =

∫ 1

−1

(∫
f−1(t)

√
1− t2
Jf

dVf−1(t)

)
dt (6.6)

As shown in Example 2.7

Jf (n) = ‖∇f(n)‖ =
√

1− t2, t = f(n).

From (6.6) we deduce

IN =

∫ 1

−1

(∫
f−1(t)

dVf−1(t)

)
dt =

∫ 1

−1

(
1− t2

)N−2
2 σN−2dt = 2σN−2

∫ 1

0

(
1− t2

)N−2
2 dt

t→
√
u

= σN−2

∫ 1

0
(1− u)

N
2
−1u

1
2
−1du = σN−2B

(
1

2
,
N

2

)
= σN−2

Γ(N2 )Γ(1
2)

Γ(N+1
2 )

(2.5)
=

σN−2σN
σN−1

=
2πn/2Γ(N2 )

Γ(N−1
2 )Γ(N+1

2 )
.

ut

From Lemma 6.2 and equations (6.3), (6.4), and (6.5) we conclude∫
GraffN−1(X)

|L ∩M | dµ(L) =
IN
2

∫
M
dVM (p) =

πN/2Γ(N2 )

Γ(N−1
2 )Γ(N+1

2 )
volN−1(M).

ut

Remark 6.3. (a) Note that, when N = 2, a curve in R2 is also a codimension 1 submanifold
of R2. In this case the constants that appear in the Crofton formulæ (4.1) and (6.1) coincide

π
N−1

2

Γ(N+1
2 )

=
πn/2Γ(n2 )

Γ(n−1
2 )Γ(n+1

2 )
= 2.

(b) When N = 3 the constant that appears in the Crofton formula (4.1) is

π
N−1

2

Γ(N+1
2 )

= π
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and the constant that appears in the Crofton formula (6.1) is

πN/2Γ(N2 )

Γ(N−1
2 )Γ(n+1

2 )
=
π2

2
.

ut
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